McKee Creek, Cabarrus County

Prepared for:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program

> 2728 Capital Blvd, Suite 1H 103 Raleigh NC 27604

Restoration Plan

August 15, 2008

Prepared by:

Withers & Ravenel 111 MacKenan Drive Cary, NC 27511

Phone: (919) 469-3340 Fax: (919) 238-2099

Project Manager: C. Heath Wadsworth, PE Email: hwadsworth@withersravenel.com Direct Line: (919) 238-0323

Executive Summary

i. Project goals and objectives

The McKee Creek project is located in southwestern Cabarrus County near the Mecklenburg County line; the majority of the McKee Creek drainage basin is located in Mecklenburg County. The site lies in the Yadkin River Basin, within the Rocky River sub-basin (HUC8 – 03040105) and in the Reedy Creek local watershed (14-Digit HUC – 03040105010050). Approximately half of the Reedy Creek local watershed is located in eastern Mecklenburg County and the other half is in southwestern Cabarrus County. A Local Watershed Plan (LWP) has been developed for the Reedy Creek watershed; the plan is called *Watershed Management Plans & Recommendations – Lower Yadkin/ Upper Rocky River Basin Local Watershed Planning* (WMP&R – Lower Yadkin/ Upper Rocky River Basin LWP, 2004). The LWP describes the watershed as predominately rural in character, with the addition of the newly opened Interstate Route 485 beginning to foster development within the watershed. The Plan also states that the presence of several large tracts of land under single ownership makes the Reedy Creek local watershed a prime candidate for rapid residential and commercial development (WMP&R – Lower Yadkin/ Upper Rocky River Basin LWP, 2004). An assessment of the McKee Creek watershed while creating this restoration plan confirms that rapid development is underway along the Interstate 485 corridor.

The proposed project includes restoration work along two streams, McKee and Clear Creek. The majority of the project site consists of pasture land with a narrow forested buffer along portions of McKee Creek. Along the lower half of the project site livestock currently has unlimited access to McKee and Clear Creeks. The McKee Creek project was identified in the Lower Yadkin River Basin Local Watershed Plan. The functional improvement goals that were listed in the LWP for the project were to repair buffer disturbance, decrease/repair streambank erosion, prevent/limit livestock access, repair channel alteration, decrease turbidity, and remove/ control nutrients (WMP&R – Lower Yadkin/ Upper Rocky River Basin LWP, 2004). The proposed restoration plan for the McKee Creek project will achieve most of the LWP goals by fencing and removing livestock from the creeks, and establishing and protecting a vegetative buffer within a conservation easement. The goals pertaining to stabilization and erosion will be addressed by using in-stream structures and pattern re-alignment in selected areas along McKee Creek, and by restoring the dimension, pattern, and profile of Clear Creek.

The existing stream conditions within the project area are characterized by excess sedimentation, channel incision, bank degradation, and limited riparian buffer. Also, livestock have unlimited access to all of Clear Creek and a portion of the lower reach of McKee Creek, this has significantly contributed to the instability and poor water quality of the project reaches. The project design goals are to restore through stream enhancement (Level I and Level II) McKee Creek, and to restore Clear Creek (Priority I restoration). In order to achieve the design goals, the following objectives have been identified:

- Improve water quality by reducing bank erosion, restricting livestock access to the creeks, and re-establishing the riparian buffer;
- Stabilize McKee Creek through the use of in-stream structures and pattern re-alignment in selected areas;
- Restore the dimension, pattern, and profile of Clear Creek;
- Improve the floodplain functionality of Clear Creek by matching floodplain elevation with bankfull stage;

- Improve the wildlife habitat functions of the site through riparian buffer establishment, improved stream bedform diversity, and improved floodplain functionality.
- Protect the site through a permanent conservation easement along the project reaches.

In order to determine if the project design successfully achieves the objectives listed above, monitoring will be performed on the as-built condition for 5-years. The success of the design streams overall stability and functionality will be determined through cross-section and longitudinal surveys, pebble counts, and photo reference sites. Changes to the physical cross-section and/or longitudinal measurements will be evaluated to determine if they represent a movement toward a more unstable condition. The success of the buffer establishment objective will be measured through photo reference sites, plant survival plots, live stake counts, and tree counts.

ii. Existing amount of streams

McKee Creek has been divided into two reaches within the project site; McKee Creek – Reach 1 is upstream of Peach Orchard Road and McKee Creek – Reach 2 is downstream of the crossing. The existing stream lengths of McKee Creek – Reach 1 and Reach 2 are 3,733 linear feet (lf) and 847 lf, respectively. The third project reach is Clear Creek; it has an existing stream length of 1,513 lf. The total existing amount of stream within the project limits is 6,093 lf.

iii. Amount of streams designed

The proposed stream design will result in 1,641 lf of stream restoration on Clear Creek, and 1,096 lf of stream enhancement (Level I) and 3,240 lf of stream enhancement (Level II) on McKee Creek. The total proposed amount of streams designed is 5,977 lf.

Table of Contents

1.0 Project Site Identification and Location	1
1.1. Directions to Project Site	1
1.2. USGS Hydrologic Unit Code and NCDWQ River Basin Designations	1
1.3. Project Vicinity Map	
2.0 Watershed Characterization	1
2.1. Drainage Area	1
2.2. Surface Water Classification / Water Quality	2
2.3. Physiography. Geology and Soils	2
2.4. Historical Land Use and Development Trends	2
2.5. Endangered / Threatened Species	3
2.6. Cultural Resources	4
2.7. Potential Constraints	5
2.7.1. Property Ownership and Boundary	5
2.7.2. Site Access	5
2.7.3. Utilities	5
2.7.4. FEMA / Hydrologic Trespass	6
3.0 Project Site Streams (existing conditions)	6
3.1. Channel Classification	6
3.2. Discharge (bankfull, trends)	7
3.3. Channel Morphology (pattern, dimension, profile)	8
3.4. Channel Stability Assessment	
3.5. Bankfull Verification	10
3.6. Vegetation	11
4.0 Reference Streams	
4.1. Watershed Characterization	12
4.2. Channel Classification	12
4.3. Discharge (bankfull, trends)	12
4.4. Channel Morphology (pattern, dimension, profile)	
4.5. Channel Stability and Assessment	
4.6. Bankfull Verification	
4.7. Vegetation	13
5.0 Project Site Restoration Plan	
5.1. Restoration Project Goals and Objectives	
5.1.1. Designed Channel Classification	
5.1.2. Target Buffer Communities	
5.2. Sediment Transport Analysis	
5.2.1. Methodology	
5.2.2. Calculations and Discussion	
5.3. HEC-RAS Analysis	18
5.3.1. No-rise, LOMR, CLOMR	18
5.3.2. Hydrologic Trespass	19
5.4. Natural Plant Community Restoration	
5.4.1. Narrative & Plant Community Restoration	
5.4.2. On-site invasive Species Management	20
6.0 Performance Criteria	
6.1. Streams	20
6.2. Vegetation	21
6.3. Schedule / Reporting	
7.0 References	22

8.0 Tables

- Table 1. Project Restoration Structure and Objectives
- Table 2. Drainage Areas
- Table 3. Land Use of Watershed
- Table 4a c. Morphological Tables
- Table 5. BEHI/NBS and Sediment Export Estimate for Project Site Streams
- Table 6. BEHI/NBS and Sediment Export Estimate for Reference Stream
- Table 7. Designed Vegetative Communities (by zone)
- Table 8. HEC-RAS Bankfull Model Output Table (McKee Creek Reach 1)
- Table 9. HEC-RAS Bankfull Model Output Table (McKee Creek Reach 2)
- Table 10. HEC-RAS Bankfull Model Output Table (Clear Creek)
- Table 11. Sediment Transport Competency Analysis Using HEC-RAS (McKee Creek Reach 1)
- Table 12. Sediment Transport Competency Analysis Using HEC-RAS (McKee Creek Reach 2)

9.0 Figures

- Figure 1. Project Site Vicinity Map
- Figure 2. Project Site Watershed Map
- Figure 3. Project Site NRCS Soil Survey Map
- Figure 4a b. Project Site Hydrological Features Map with Gauge Locations
- Figure 5. Reference Site Vicinity Map
- Figure 6. References Site Watershed Map
- Figure 7. Reference Site NRCS Soil Survey Map
- Figure 8. Reference Site Vegetative Communities Map

10.0 Exhibits

Exhibit 1. Stage vs. Stream Power for Clear Creek (Existing compared to Design)

- Exhibit 2. Stability Curves from HEC-RAS (Clear Creek Design)
- Exhibit 3. NC Piedmont Rural Regional Curve (reference and survey data comparison)

11.0 Design Sheets

Sheets A – G. Existing Channel or Site Conditions

Sheets 1 - 5. Designed Channel Alignment and / or Site Conditions (With Longitudinal Profile) Sheet 7 - 8. Designed Vegetative Communities Map (by Zone)

12.0 Appendices

Appendix 1. Project Site Photographs

- Appendix 2. Project Site USACE Routine Wetlands Determination Data Forms
- Appendix 3. Project Site NCDWQ Stream Classification Forms

Appendix 4. Reference Site Photographs

Appendix 5. Reference Site USACE Routine Wetland Determination Data Forms

Appendix 6. Reference Site NCDWQ Stream Classification Forms

Appendix 7. HEC-RAS Analysis

Appendix 8. FHWA Categorical Exclusion Form

1.0 Project Site Identification and Location

1.1. Directions to Project Site

The project site is located approximately 3,000 feet southeast of the intersection of NCSR 1168 Robinson Church Road and NCSR 1169 Peach Orchard Road (Latitude: 35.2687°N and Longitude: 80.6372°W). Take US-64 West from the Raleigh area to Asheboro, and then take NC-49 approximately 54 miles south to Harrisburg. Once in Harrisburg, turn left off of NC-49 onto NCSR 1168 Robinson Church Road. Stay on Robinson Church for approximately 4 miles, and then turn left onto NCSR 1169 Peach Orchard Road. Peach Orchard Road intersects the project site.

The project site is currently used for agriculture; the majority of the floodplain consists of pasture and livestock grazing areas. The proposed easement area for the section of McKee Creek upstream of Peach Orchard Road has a narrow forested buffer with the remaining areas consisting mostly of pasture. The proposed easement area for the section of McKee Creek downstream of Peach Orchard Road and along Clear Creek maintains some forested areas, but the forested buffer in this area has been heavily disturbed by livestock intrusion. The total area for the proposed conservation easement is approximately 16.9 acres.

1.2. USGS Hydrologic Unit Code and NCDWQ River Basin Designations

The site lies in the Yadkin River Basin, within the North Carolina Division of Water Quality (NCDWQ) sub-basin 03-07-11 and United States Geologic Survey (USGS) hydrologic unit 03040105. The project is in the Reedy Creek local watershed (14-Digit HUC – 03040105010050).

1.3. Project Vicinity Map

Figure 1 in the appendix shows the project vicinity map. The project site is located in southwestern Cabarrus County near the Mecklenburg County line; it is approximately 8 miles northeast of downtown Charlotte.

2.0 Watershed Characterization

2.1. Drainage Area

The watershed boundaries and drainage area sizes for the three project reaches are shown on Figure 2 and Table 2. The McKee Creek drainage area at the downstream project limits is 6.6 mi², and the drainage area at the downstream limit of Clear Creek is 1.0 mi². The drainage basin areas were determined using Mecklenburg and Cabarrus County topography in GIS. The majority of the McKee Creek watershed extends into a developing area within Mecklenburg County; the Interstate 485 (I-485) corridor crosses the basin boundaries approximately 1 mile upstream of the project limits. The Clear Creek watershed drains a fairly rural section of Cabarrus County.

2.2. Surface Water Classification / Water Quality

The stream index number for Clear Creek is 13-17-8-4-1 and the water quality classification is "C". The stream index number for McKee Creek is 13-17-8-4 and the water quality classification is "C". According to the *Lower Yadkin River Basin Local Watershed Plan* (Lower Yadkin LWP – PFR, 2003 and WMP&R – Lower Yadkin LWP, 2004) both McKee Creek (from source to Reedy Creek) and Clear Creek (from source to McKee Creek) are 303(d) listed streams; McKee Creek for fecal coliform and sediment and Clear Creek for fecal coliform (NCDENR, 2004). According to NCDENR the potential sources of impairment for McKee Creek include minor non-municipal discharges, agriculture, land development, and urban runoff/ storm sewers, and for Clear Creek potential impairment sources include agriculture, land development, and urban runoff/ storm sewers (NCDENR, 2003b). It is stated in the LWP that DWQ studies of fecal coliform bacterial sources for McKee and Clear Creeks have indicated that livestock grazing is one of the contributing factors. There are two minor NPDES permitted discharges from private wastewater treatment plants that empty into McKee Creek that are located upstream of the project site. One of the discharges is located just upstream of the project limits.

2.3. Physiography. Geology and Soils

The physiographic region in which McKee and Clear Creeks are located is identified as the Piedmont; the southern outer piedmont ecoregion of the Piedmont. This region stretches from the base of the Blue Ridge east to the fall line and is characterized by soils which range from gravelly loams to clay. The underlying geology includes metamorphosed Mafic rock and metamorphosed Quartz Diorite; soil depth to bedrock can range from 5 to more than 15 feet.

The project site is located at approximately 605 feet above sea level and within the Mixed Felsic and Mafic Soil Systems. The soil series is Chewacla, a sandy loam that is somewhat poorly drained and found in floodplains (0-2% slope) throughout the Piedmont, encompasses both the McKee and Clear Creek project areas. Outside of the growing season, November through April, the water table in these piedmont floodplains can be within 0.5 feet of the surface depending upon rainfall. The average annual rainfall for Cabarrus County is 47.3 inches.

2.4. Historical Land Use and Development Trends

The land use and current impervious cover estimates for both the McKee and Clear Creek watersheds was determined using Mecklenburg and Cabarrus County GIS data, as well as available digital aerial photos. The historical land use information was determined from historical aerial photographs for Cabarrus County. The more recent land use trend information pertaining to urbanization was obtained from the *Lower Yadkin Local Watershed Plan (LWP) – Preliminary Findings Report* (Lower Yadkin LWP – PFR, 2003).

The historic land use within the project watersheds and within the project boundary is very consistent with a typical piedmont rural farm landscape. Dating back to 1938, and likely before this year due to the well defined established field boundaries, the historical land use adjacent to the project has consisted of pasture/hay fields (perennial grasses) and forested areas. The upland land use, determined by the soil type, has typically been dominated by pasture/hay fields, and the lower lying land (floodplain) has been dominated by a forested cover type. However, during review of the 1938 and 1956 aerial photographs, several fields directly adjacent to McKee Creek were cultivated. The photographs post 1956 and actual field reconnaissance indicate that cultivating farming practices seized and the fields were converted to either pasture or hay fields.

Generally, streams that are located within the historic land use areas described for the watershed and project site have been heavily impacted by channelization practices or livestock intrusion. Straightening, channelization, and/or channel relocation to the streams is very common in these areas because the historic landowners attempted to maximize the use of their lands for pasture, hay fields, and/or cultivation. This was usually done by relocating the stream channel to the unnatural valley edge, and using channelization practices in order to reduce the frequency in which storm events accessed the floodplain.

As previously stated above, the majority of the McKee Creek watershed is located in a developing region of Mecklenburg County. Tables 3 outlines a breakdown of the McKee Creek drainage basin's land use. Over half of the drainage area has already been developed; the majority of the development is single-family residential (52% of total drainage area). Approximately 42% consists of woods and pasture land that has not yet been developed. A large portion of the undeveloped land is adjacent to the I-485 corridor, and is mostly made up of large parcels of land. Due to this, it is highly likely that the woods and pasture lands will be developed in the near future. A large portion of the development in the watershed has occurred within the last 5 to 8 years. The Lower Yadkin – LWP, which included data mostly collected from the years 2000 to 2002, estimated the impervious cover to be 3.7% and for forested and agricultural lands to comprise 93% of the watershed (Lower Yadkin LWP - PFR, 2003). A current assessment of the land use estimates that the impervious cover is 10% to 12% and that woods and pasture now make up approximately 42% of the McKee Creek basin. This trend of development within the watershed is consistent with the Lower Yadkin -LWP, which projected population growth from 2000 to 2010 to be 19.8% and 15.5% within the Mecklenburg and Cabarrus County portions of the basin, respectively (Lower Yadkin LWP - PFR, 2003).

The Clear Creek watershed has some development, but is still mostly rural (83% woods and pasture land). A single-family residential development is currently under construction in the upper reaches of the watershed. The project reach has been exposed to higher than normal levels of fine sediments from the upstream reaches due to poor erosion control practices. Local and County officials are aware of the erosion control issues and have implemented closer monitoring and enforcement. Development trends within southwestern Cabarrus County indicate that the woods and pasture lands within the Clear Creek drainage basin will eventually be replaced with single-family residential subdivisions (probably within the next 10 to 15 years).

The projected future development, which will eventually change the watershed character from rural to more urban, could threaten the sustained stability of the proposed designs. However, it is anticipated that the project designs will maintain stability through the use of grade control, bank protection, and most importantly an established vegetative buffer. Also, the implementation of stormwater ordinances by Mecklenburg and Cabarrus Counties, and the Town of Harrisburg, which require the attenuation of runoff at each proposed development, should limit the increases in the peak discharges that are experienced by the design channels. The impacts that current and future development may have on stream stability and the bankfull discharge is further discussed in *Section* 3.5 - Bankfull Verification.

2.5. Endangered / Threatened Species

Scientific Name	Common Name	Status
Helianthus schweinitzii	Schweinitz's Sunflower	Endangered
Lasmigona decorata	Carolina Heelsplitter	Endangered

Schweinitz's Sunflower (Helianthus schweinitzii) - Federally Endangered.

The Schweinitz's sunflower is a perennial herb that often reaches the height of 3 to 6 feet. This herb usually forms a solitary stem in which branching occurs at or near mid-stem. Lanceolate pubescent leaves develop in an alternate pattern near the lower portion of the stem and an opposite pattern closer to the flower. These leaves usually have an entire leaf margin with the occasion serration and are approximately 5 times longer than they are wide. The flowering period occurs during late August and into early September were petals 0.75 to 1.25 inches long form around the small seed head. Preferred habitat of the Schweinitz's sunflower consists of areas that are maintained by fire or some other kind of disturbance. Habitat in which the Schweinitz's sunflower would be found today consists of old pastures, utility easements, and roadsides. The preferred soil type is a shallow clay soil produced from the parent material derived from mafic rocks (USFWS 1994).

No populations of Schweinitz's sunflower have been documented in the project area (NCNHP records).

Carolina Heelsplitter (Lasmigona decorata) - Federally Endangered.

Carolina Heelsplitter is a fresh water mussel (bivalve) that, as an adult can be 4.6 inches in length, 1.56 inches in width, and 2.7 inches high. The outer shell is usually a dark brown to a greenish brown. The inside portion of the shell in younger mussels is a white to a bluish white. Mature mussels have an orange tint to the inner shell. The desired habitat consists of mud, muddy sand, and muddy gravel near the banks of a stable well shaded stream.

No populations of the Carolina Heelsplitter have been documented in the project area (NCNHP records). Although a population was observed within one mile of the site, it was last observed prior to 1870, and is listed as extirpated in the NHP database.

In conclusion;

No suitable habitat or soils were observed that could potentially support populations of Schweinitz's sunflower, therefore, we believe that this project will have 'no affect' on populations of Schweinitz's sunflower.

Although a perennial stream is present in the project corridor, due to the fact that the stream has been degraded and the fact that the stream lacks a vegetated riparian corridor, it is unlikely that the Carolina Heelsplitter is present. Moreover, the occurrence reported by the NCNHP office is located in a tributary downstream of our project and listed as historic. The Heelsplitter has not been observed since 1870 and is listed as extirpated on the NHP database. Therefore, we believe that the restoration of McKee Creek and Clear Creek will have 'no affect' on populations of the Carolina Heelsplitter.

2.6. Cultural Resources

The project team utilized the resources provided by the North Carolina State Historic Preservation Office (NCSHPO) to research and identify any historic structures potentially located within the McKee Creek restoration project boundaries. The team also reviewed maps provided by the North Carolina Office of State Archaeology (NCOSA) to research and identify the presence, absence, or potential for any archaeological sites within or adjacent to the proposed restoration project. Additionally, the property owner was interviewed regarding any known structures existing in the vicinity of the restoration corridor. Visual investigations were conducted in the field to verify researched information.

No archaeological sites of interest requiring field evaluation were identified by NCSHPO or NCOSA during the records search for this project. Additionally, the determination of no historic architecture within the project boundary was confirmed visually during the existing conditions mapping. A letter dated August 9, 2007, was sent to the State Historic Preservation Office and the State Office of Archaeology requesting concurrence with our determination of no impact by the proposed restoration project on structures or sites listed on or potentially eligible for the Federal Register. We have recently received correspondence from the State Historic Preservation Office stating that they have 'no comment' on the project as proposed.

2.7. Potential Constraints

2.7.1. Property Ownership and Boundary

The project parcel that will be impacted is the A. Eugene Divine property located along NCSR 1169 Peach Orchard Road. The parcel is owned in fee simple by A. Eugene Divine as recorded in deed book 819, page 182 and contains 180 acres more or less. All sections of McKee Creek and Clear Creek that will be restored or enhanced fall completely within the Divine property boundary line. The downstream project limits for the designs on McKee and Clear Creeks will be at the property boundary between the A. Eugene Divine and Giant Peach, LLC properties. Since a portion of the shared property boundary falls within the confines of McKee Creek, it will be necessary to stake the property line during construction in order to minimize impact to the Giant Peach, LLC property.

2.7.2. Site Access

Two gated access points exist along NCSR 1169 Peach Orchard Road and provide limited entry to the project site. These entry points should be sufficient for construction and monitoring purposes with slight modification and reinforcement. A third access point along the road is the shared driveway for the Divine home. This is the sole entry point to the upstream section of McKee Creek from the project start point to the intersection with NCSR 1169. This entry point is sufficient for design and monitoring access purposes, but it cannot be used for construction. A replacement entry point will be planned in the project design to facilitate access to the upper reach of McKee Creek.

2.7.3. Utilities

The following utilities and easements were found to exist on or near the A. Eugene Divine parcel located along NCSR 1169 Peach Orchard Road. Several properties bordering Peach Orchard Road refer to a right-of-way claimed by the North Carolina Department of Transportation within their deed description. No deed dedicating this right-of-way has been found during record searches for the project. The lack of a deed does not preclude the existence of a right-of-way. Therefore, we may at this time safely infer from the limited evidence that NCDOT has only claimed a maintenance right-of-way for NCSR 1169 Peach Orchard Road. This right-of-way would encompass an area sufficient for maintaining the road and the bridge located at the intersection between McKee Creek and NCSR 1169. A maintenance right-of-way typically extends from back of ditch to back of ditch along the alignment of the roadway and usually does not exceed a 60 foot width. The maintenance right-of-way should not be affected by the project as all restoration activities are planned to be outside this area to mitigate any adverse effects to

the roadway and bridge. The conservation easement will be created to have no overlap with the NCDOT right-of-way to ensure no future easement conflicts.

A twenty foot utility easement was granted to Public Service Company of North Carolina, INC. in deed book 670, page 306 for the purpose of laying, constructing, and maintaining a natural gas pipeline. The easement is aligned and centered on the pipeline as constructed. The easement is located within the maintenance right of way for NCSR 1169 and should not be affected by the project.

2.7.4. FEMA / Hydrologic Trespass

Hydraulic modeling with HEC-RAS has confirmed that hydraulic trespass will not be an issue on the McKee Creek Project. Hydraulic trespass was considered during the design of all the project stream reaches; the designs were altered in order to avoid trespass issues.

The section of McKee Creek within the project limits is located in a FEMA detailed floodplain. Stream enhancement (Level I) is proposed on sections of the project reach of McKee Creek. Some of the existing sections along McKee Creek project reaches have experienced channel deposition since the cross-sections were surveyed for the original FEMA flood model. Since our proposed design will remove some of the deposited sediment, the proposed 100-year water surface elevation is less than the corrected effective/ existing condition 100-year water surface elevation (decrease greater than 0.1 ft). As a result, it is anticipated that a FEMA Letter of Map Revision (LOMR) will be required at the conclusion of the project's construction; the LOMR will be submitted by the NC EEP. The local floodplain administrator for Cabarrus County was contacted (Mike Byrd). Mr. Byrd stated that what he required for us to show compliance was verification that our design would not cause hydraulic trespass issues to the adjacent properties (comparing proposed condition to the existing condition). The proposed design condition meets Mr. Byrd's standards for compliance. However, the NC EEP is mandated by the State of North Carolina to comply with the FEMA rules and regulations which currently state that if the proposed condition causes more than a 0.1 ft decrease when compared to the corrected effective/existing condition then a LOMR is required.

3.0 Project Site Streams (existing conditions)

The following report sections summarize the existing conditions of the project reaches. The project streams were divided into three different reaches; McKee Creek – Reach 1, McKee Creek – Reach 2, and Clear Creek. The McKee Creek reaches are separated by the bridge crossing at Peach Orchard Rd. Detailed maps of the existing site conditions are outlined on Sheets A through G within Section 11 of this report; Sheet A shows the location of the three project reaches. All stationing referenced in this section corresponds with the existing alignments shown on the existing site conditions sheets. McKee Creek and Clear Creek are identified as 3rd order streams by the Strahler Stream Order methodology (Lanfear, 1990). USGS Quadrangles were used in identifying the streams within the McKee and Clear Creek's upper watersheds.

3.1. Channel Classification

The existing project streams have been impacted by outside forces such as livestock, urbanization, and stabilization practices. Livestock on the property has unlimited access to all of Clear Creek and the majority of McKee Creek – Reach 2. The livestock traffic within the two reaches introduced excessive amounts of sediment into the streams, and caused the collapse and destabilization of many of the stream banks. It appeared in some areas within the project reaches,

particularly in Clear Creek, that attempts were made to stabilize sections using rip rap or relocated stream bed cobble and stone. The introduction of excess sediment from upstream development within the drainage basins for both McKee and Clear Creeks influenced the existing streambed material as well.

McKee Creek – Reach 1 classifies as an E4 stream type in the Rosgen system. McKee Creek – Reach 1 is slightly entrenched, with high width/depth ratios, high sinuosity, and a gravel/cobble bed material. McKee Creek – Reach 1 is in a more stable condition than the other two project reaches mainly because its banks are not accessed by livestock, and it has more of an established and undisturbed vegetated buffer. A modified Wolman reach-wide pebble count (Rosgen, 1994) was performed on McKee Creek – Reach 1 in order to determine the streambed classification.

McKee Creek – Reach 2 classifies as an E4 stream type in the Rosgen system. McKee Creek – Reach 2 is slightly entrenched, with low width/depth ratios, very high sinuosity, and a gravel/cobble bed material. Due to the amount of sediment introduced to the project reach by livestock access and adjacent development practices, the majority of the sediment material on the streambed was coarse grained sand. Since there was so much fine sediment within the project reach, a reach-wide pebble count was not performed. There was evidence below the layer of finer sediments of some gravel and cobble; it is assumed that under normal/natural conditions that the reach will have a relatively similar streambed as McKee Creek – Reach 1, hence the gravel/cobble streambed classification.

Clear Creek classifies as an E/C5 stream type in the Rosgen system. Clear Creek is slightly entrenched, with low to high width/depth ratios, low sinuosity, and a very coarse sand bed material. Due the excessive degradation caused by livestock access, the reach dimensions varied which resulted in a range of width/depth ratios from 5.8 to 12.8. Therefore the project reach could be classified as either a Rosgen E or C stream type; more than likely without the livestock influences the stream would classify as an E stream type. Due to the excessive amount of fine sediment within Clear Creek, a reach-wide pebble count was not performed. A section of Clear Creek upstream of the project site had a streambed that consisted of fine to very fine gravel; although the upstream section was not stable, the streambed was in a more natural condition due to the absence of livestock intrusion. There was also evidence below the layer of finer sediments of some fine gravel within the project reach of Clear Creek. As a result, it is assumed that under undisturbed conditions that the Clear Creek design reach will have a fine to very fine gravel streambed.

3.2. Discharge (bankfull, trends)

Although the project reaches have started to become impacted by some urbanization, the overall impervious cover within the project watersheds is still relatively low. Some residential development is underway upstream of the Clear Creek project reach (only about 10% of the drainage area), but the watershed as a whole is very rural. Urbanization is underway in the McKee Creek watershed, particularly in the Mecklenburg County portions. However, the overall impervious cover within the watershed is estimated between 10% and 12%. Physical habitat degradation is generally considered to begin when the impervious cover within a drainage basin starts to increase above the 10% threshold (CWP, 2003). The field bankfull indicators and the HEC-RAS model confirm that McKee Creek should be treated as a rural system for the purpose of bankfull discharge determination.

It is anticipated that additional run-off volume generated from development within the last five years and in the future within the McKee Creek watershed has been and will continue to be

attenuated by the Mecklenburg County Storm Water Ordinance. The ordinance requires that developments which exceed 24% built-upon area control the volume leaving the project site at post-development for the 1-year, 24-hour storm, and that peak control be installed for the appropriate storm frequency (i.e., 10, 25, 50 or 100-yr, 6-hr) as determined by the Storm Water Administrator based on a downstream flood analysis. Mecklenburg County estimates that controlling the 1-year, 24-hour volume achieves peak control for the 2-year, 6-hour storm (Mecklenburg County, 2007); it is generally estimated that bankfull discharge is approximately the 1.5-year storm. It should be noted that even though the stormwater structures implemented upstream of the project reaches will probably limit increases in the peak discharges that are experienced by the project site, there is still the possibility that some channel degradation caused by future urbanization may occur. In some instances stormwater controls that attenuate flows can cause receiving streams to become exposed to lower frequency flows for longer periods of time, which can be just as erosive as increased peak flows (e.g., the McKee Creek project reach could be exposed to the design bankfull flow for longer periods of time per each bankfull occurrence). Furthermore, the implementation of sound stormwater management can only minimize the impact to the project site from development in the upstream watershed. It is inevitable that the project reaches will be subjected to the forces from an urbanizing watershed such as larger magnitude peak flows, reduced lag times, more frequent bankfull events, and reduced baseflows. As upstream urbanization continues, it is anticipated that the proposed design will maintain stability through the use of structures which provide grade control and bank protection, an established vegetative buffer, and energy dissipation through floodplain connectivity.

3.3. Channel Morphology (pattern, dimension, profile)

The project reaches of McKee and Clear Creek are in moderately wide alluvial, low sloped valleys, and have well developed floodplains. The described valley type generally indicates the presence of Rosgen C and E type channels (Rosgen, 1996). The existing channels have been classified as C and E type channels, and the proposed design channels are C type channels.

McKee Creek – Reach 1 has developed some pattern at the upstream portions of the reach (sta 0+00 to 10+00), and is in the process of developing more pattern throughout the reach (sta 16+00) to 20+00; sta 25+00 to 32+00). Overall the project has a relatively high sinuosity (1.28), but it appears that some sections were straightened by past channelization practices (sta 13+00 to 16+00; sta 20+00 to 25+00). The majority of the reach is incised with bank height ratios that range from 1.4 to 2.0, and has cross-sectional dimensions that maintain moderate width/depth ratios that range from approximately 7 to 12 (sta 0+00 to 25+00). The cross-section dimension for the section of the reach from station 25+00 to 33+00 has been impacted by excessive deposition that appears to have resulted from backwater caused by a large tree that blocks the channel (near sta 33+00) and some potential beaver activity; this section has very high width/depth ratios that range from 10 to 44 (see Table 8). Besides the section that has experienced deposition, the profile for the majority of the reach appears to be controlled by bedrock in the channel bed (surveyed bedrock is shown on the existing site conditions sheets). Due to the deposition area from sta 25+00 to 33+00, a large section of the profile is almost completely flat from approximately station 18+50 to 25+00. This has resulted in a long pool section that maintains stagnated water during normal flow conditions (see photo #32 in Appendix 1), and it acts as a sediment trap that accumulates fine sediments.

McKee Creek – Reach 2 has a well developed pattern throughout the reach. Overall the project has a very high sinuosity (1.50), and in some instances the riffle sections flow in a direction that are almost perpendicular to the valley flow (sta 6+00 to 6+50; sta 13+00 to 14+00). The majority

of the reach is slightly incised with bank height ratios that range from 1.0 to 1.2, and has crosssectional dimensions that maintain moderate width/depth ratios that average from approximately 8 to 10. As stated in previous sections the reach dimensions have been impacted by livestock intrusion. The profile for the reach appears to be controlled by bedrock in the channel bed (surveyed bedrock is shown on the existing site conditions sheets). The high sinuosity within the reach has resulted in a relatively low slope for McKee Creek – Reach 2 (0.0018 ft/ft).

Clear Creek has very little developed pattern throughout the reach. Overall the project has a low sinuosity (1.12). The majority of the reach is highly incised with bank height ratios that range from 1.4 to 2.3, and has cross-sectional dimensions that maintain moderate width/depth ratios that range from approximately 5.8 to 12.8. The reach dimensions have been extremely impacted by livestock intrusion; the Clear Creek project reach appears to be frequently accessed by livestock. The profile grade for the reach appears to be controlled by an existing culvert crossing (sta 11+00), the confluence with McKee Creek, and areas throughout the reach in which rip rap/ stone has been added to the channel bed.

3.4. Channel Stability Assessment

For the purpose of describing the stability of McKee Creek – Reach 1, the project reach has been divided into six sections. Section 1 of the reach is from station 0+00 to 7+50. Section 1 is more sinuous and incised than the remainder of the reach. The majority of this section is laterally unstable; vertical instability appears to be limited due to several bedrock outcroppings in the channel bed. A visual inspection and the BEHI assessment of the section verify that degradation is prevalent as a result of the lateral instability. Based on the existing conditions, it appears that this section will continue eroding and depositing sediment before natural stability is achieved. Section 2 of the reach is from station 7+50 to 16+00. Section 2 is relatively straight and stable with low to moderate bank degradation and instability. This section does not seem to have any severe lateral or vertical stability issues. Section 3 of the reach is from station 16+00 to 20+00. Within this section McKee Creek is attempting to develop pattern. Although bedrock in the channel bed has limited vertical instability, it has forced the creek to dissipate its energy through lateral migration which has caused severe lateral instability in this section. Section 3 will continue eroding before natural stability is achieved; parts of the section could possibly avulse if not stabilized. Section 4 of the reach is from station 20+00 to 25+00. Section 4 is relatively straight and stable due to backwater impacts produced by downstream deposition and potential beaver activity. This section has very little bedform diversity; it is basically one long pool section. Under normal flow conditions this section maintains a pool of stagnant water, and acts as a sediment trap that collects fine sediment. Section 5 of the reach is from station 25+00 to 33+00. Section 5 is unstable due to excessive deposition that appears to have been caused by the backwater impacts from a large tree that lies across the channel near station 33+00. Large amounts of coarse gravel and small cobble have been deposited in this section which has resulted in very high width/depth ratios, and some areas have become braided as the channel attempts to redevelop its dimension and pattern. With its high width/depth ratios and continued backwater impacts, this section will continue depositing sediment and being unstable in the future. Also, it is important to note that the backwater caused by the excessive amounts of deposition directly impact the stagnant state of upstream section 4. Section 6 of the reach is from station 33+00 to the bridge crossing at Peach Orchard Road. This section is straight and stable; it is more stable than the other sections of McKee Creek - Reach 1. Section 6 will probably maintain lateral and vertical stability under the current conditions.

McKee Creek – Reach 2 is very sinuous, and livestock access to the creek has caused instability throughout the reach. Although bedrock in the channel bed has limited vertical instability, it has

forced the creek to dissipate its energy through lateral migration which has caused some lateral instability in this reach. From station 1+00 to 6+00 the livestock traffic has caused some areas to become overly wide which has resulted in mid channel bars and poor sediment transport. The high sinuosity and low slope within the reach threatens to negatively impact the sediment transport capacity and competency. The lateral instability and process of erosion and deposition will continue before natural stability is achieved; especially if the livestock are not denied access to the creek. The current bedform for the reach is riffle dominated (approximately 80%); the majority of the pools have been caused by isolated debris jams.

Clear Creek has a low sinuosity, and livestock access to the creek has caused most of the instability throughout the reach. Most of the Clear Creek reach is extremely incised and has low width/depth ratios. There are signs throughout the reach that the creek is attempting to form pattern; the lateral instability is very erosive due the bare creek banks which maintain little to no vegetative cover. Even though the reach is mostly incised, further vertical stability issues appear to be limited due to grade control features such as a culvert crossing, the confluence with McKee Creek, and the use of rip rap/stone for bed stabilization. The lateral instability and process of erosion and deposition will continue before natural stability is achieved; especially if the livestock are not denied access to the creek. The current bedform for Clear Creek is riffle dominated (approximately 70%), and the channel incision does not allow flood flows to access the abandoned floodplain with natural regularity.

The degradation potential for the existing streams within the project site was estimated by assessing their channel evolutionary state. The Watershed Assessment of River Stability & Sediment Supply (WRASSS) model developed by David Rosgen was used to estimate the overall risk rating for their degradation potential (Rosgen, 2006). Both the Clear Creek and McKee Creek – Reach 2 project reaches are in the succession scenario in which the channel is unstable because it is evolving from an "E" toward a "C" type channel. The designated risk rating for this scenario is "moderate", and the degradation potential score for both reaches is on the higher end of the "moderate" range. The unstable upper portions of McKee Creek – Reach 1 are also evolving from an "E" toward a "C" type channel. The unstable lower portion for McKee Creek -Reach 1 has a very high width to depth ratio; it appears that this section is evolving from a "C" toward a "D" type channel. The degradation potential score for the unstable sections of McKee Creek – Reach 1 range from the middle to higher end of the "moderate" ranking. According to the WRASSS documentation; "The moderate risk assessment allows the user to appropriately design measures that offset adverse consequences of specific land use practices/conditions. The resultant measures can be recommendations for stabilization, enhancement, resolution of conditions causing impairment, and/or restoration. Monitoring should be conducted to ensure that stream processes and/or land treatment are responding to mitigation measures *implemented.*" The proposed project design will use stabilization and enhancement practices along McKee Creek, and restoration along Clear Creek. The stream processes for the constructed channel improvements will then be monitored.

3.5. Bankfull Verification

During the survey of the project site an attempt was made to locate bankfull field indicators on all of the project reaches. Field identification of bankfull discharge was very difficult due to the extensive impacts to the project reaches. However, a complete compilation and comparison of all the bankfull indicators plotted along the reach profiles and cross-sections made it possible to estimate bankfull discharges for all the project reaches with some confidence. Bankfull indicators were apparent on all the project reaches, but the reliability of some was questionable due to the degraded and impacted condition of the reaches. For McKee Creek – Reach 2 and Clear Creek

the influences of livestock traffic along the stream banks made determining field indicators challenging. For McKee Creek – Reach 1 backwater impacts from a large debris jam and alterations potentially made by beaver activity also made determining field indicators challenging.

In order to verify the bankfull discharges for the project reaches, hydraulic models were developed in HEC-RAS (see Tables 8 - 10). The cross-sections for the models were produced from the field topographic survey. Bankfull discharges were estimated for each project reach using a Mannings single section analysis for all of the surveyed riffle cross-sections. The estimated bankfull discharge was then entered into the HEC-RAS model for each project reach in order to verify the bankfull stage and riffle cross-sectional area. In some locations the HEC-RAS output showed a water surface elevation that was either higher or lower than the surveyed bankfull indicators, but overall the model appears to make an adequate analysis and verification of bankfull flow through the project reaches. The relationship of the project reaches' estimated bankfull discharges and cross-sectional areas compare favorably to the same relationships from the surveyed reference reach and the NC Piedmont Rural Regional Curve (see Tables 4a - c).

3.6. Vegetation

Large portions of the site have been altered from their natural state into pasture land. Most of which were probably dominated by the Piedmont Alluvial Forest type (Schafale and Weakley, 1990). With the excessive grazing by livestock, this community has been invaded by various exotic plant species (e.g. *Eulalia viminea* and *Rosa palustris*).

Tree species associated with this plant community consists of river birch (*Betula nigra*), American sycamore (*Platanus occidentalis*), sweetgum (*Liquidambar styraciflua*), hackberry/sugarberry (*Celtis laevigata*), black walnut (*Juglans nigra*), green ash (*Fraxinus pennsylvanica*), and tulip poplar (*Liriodendron tulipifera*). The herb layer is comprised of jewelweed (*Impatiens capensis*), Goldenrod (*Solidago sp.*), Jack in the pulpit (*Arisaema triphyllum*), bearsfoot (*Polymnia uvedalia*), and wingstem (*Verbesina alternifolia*). The soil type associated with this community type is typically a highly fertile alluvial soil. This soil type develops from multiple flooding events in which small disturbances occur and sediment is deposited in the floodplain, restoring the fertility of the soil.

4.0 <u>Reference Streams</u>

A section of Dixon Branch which is located in Mecklenburg County was used for the project reference reach. The reference reach is located within the Catawba River Basin; the reference stream's upper watershed boundary is the dividing line between the Catawba and Yadkin drainage basins. The reference reach has a valley slope, bed material, and watershed character that is similar to the project reaches. Attempts to find reference reaches closer to the project site failed. Dennis Testerman, the Senior Resource Conservation Specialist for Cabarrus County, was contacted to help locate potential reference reaches in the area. Mr. Testerman stated that he has been contacted about locating reference reaches on many occasions, but to his knowledge there are not any stream reaches worthy of this designation in the area. The majority of the streams have been disturbed in some way.

4.1. Watershed Characterization

The watershed boundaries and drainage area and vicinity map for the reference reach are shown on Figures 5 and 6. The Dixon Branch drainage area at the downstream survey limits is 0.55 mi² (350 acres). The drainage basin area was determined using Mecklenburg County topography in GIS. Like the project watersheds, the Dixon Branch drainage basin is partially developed and the areas adjacent to the reach are fairly rural. The Interstate 77 (I-77) corridor crosses through the basin, and most of the upper reaches of the basin is comprised of North Mecklenburg High School. The watershed is urbanizing and due to the presence of the I-77 corridor, development will probably continue at a rapid rate. The majority of the undeveloped property consists of larger tracts of land that is currently either pasture or forest lands. The upstream portion of the reference reach watershed is more developed than the project watersheds; the percent of impervious cover for the entire watershed is approximately 20%.

4.2. Channel Classification

Dixon Branch classifies as an E4 stream type in the Rosgen system. Dixon Branch is slightly entrenched, with low width/depth ratios, relatively high sinuosity, and a medium sized gravel bed material.

4.3. Discharge (bankfull, trends)

Field identification of bankfull stage was determined during the reference reach survey by using the bankfull indicators along Dixon Branch. The most consistent bankfull indicators were significant breaks in slope, the highest scour line, and in very few instances it was the top of the bank. A complete compilation and comparison of all the bankfull indicators plotted along the reach profile and cross-sections made it possible to estimate bankfull discharge for the surveyed reach of Dixon Branch with some confidence.

4.4. Channel Morphology (pattern, dimension, profile)

Dixon Branch has a relatively well developed pattern throughout the reach. Overall the project has a high sinuosity (1.30). The majority of the reach is slightly incised with bank height ratios that range from 1.1 to 1.5, and has cross-sectional dimensions that maintain low width/depth ratios that range from approximately 5.4 to 10.8. The profile for the reach appears to be controlled by some bedrock in the channel bed and the coarse materials in the riffle sections. The slope for the reach is moderately flat, but steeper than the project reaches (0.0055 ft/ft).

4.5. Channel Stability and Assessment

Overall Dixon Branch is a very stable reach that provides good habitat and bedform diversity. The coarse riffles and some presence of bedrock keep the profile stable, and the established pattern and vegetated buffer maintain lateral stability throughout the reach. It appears that impacts from upstream development have caused some of the streams bank slopes to start to move towards a slightly more vertical state. Also, the irregularities in flow direction and velocity caused by fallen trees in the creek and bedrock outcroppings have caused some isolated areas of bank erosion.

4.6. Bankfull Verification

The relationship of the project reaches' estimated bankfull discharges and cross-sectional areas compare favorably to the same relationships from the projects reaches and the NC Piedmont Rural Regional Curve. Although the reference reach has started to become impacted by some urbanization, the overall impervious cover within Dixon Branch's watershed is still relatively low. The field bankfull indicators confirm that the reference reach should be treated as a rural system for the purpose of bankfull discharge determination.

4.7. Vegetation

The plant community located adjacent to Dixon Branch most closely resembles a Piedmont Alluvial Forest (Schafale and Weakley, 1990). However, the species composition differs slightly from an undisturbed piedmont Alluvial Forest. This variation is likely due a timber harvest, which has allowed shade intolerant species such as tulip poplar (*Liriodendron tulipifera*) and red maple (*Acer rubrum*) to dominate, rather than river birch (*Betula nigra*), black walnut (*Juglans nigra*), and American sycamore (*Platanus occidentalis*), commonly found in an alluvial forest.

Plant species observed in the riparian zone along Dixon Creek included the following canopy trees: red maple, sweetgum (*Liquidambar styraciflua*), green ash (*Fraxinus pennysylvanica*), tulip poplar, red oak (*Quercus falcata*), American beech (*Fagus grandifolia*). The mid-story was comprised of musclewood (*Carpinus caroliniana*), red cedar (*Juniperus virginiana*), black cherry (*Prunus serotina*), and American holly (*Ilex opaca*). Also noted was the presence of the invasive Chinese privette and Japanese honeysuckle. The soil type associated with this community type is typically a highly fertile alluvial soil (i.e. Chewalca). This soil type develops from multiple flooding events in which small disturbances occur and sediment is deposited in the floodplain, restoring the fertility of the soil.

5.0 Project Site Restoration Plan

The proposed project restoration includes enhancement (Level I and Level II) practices along McKee Creek and full stream restoration (Priority I) of Clear Creek. The Clear Creek project reach has been so severely degraded and altered by the unlimited access to the stream by livestock that its condition warrants restoration of its dimension, pattern, profile, and vegetated buffer in order for it to achieve the project goals and objectives. McKee Creek has several sections that are relatively stable, but maintain a limited riparian buffer. These more stable sections of McKee Creek will be improved by re-establishing portions of the vegetated buffer through stream enhancement (Level II) restoration. Other sections of McKee Creek, including all of Reach 2, that are unstable and degrading will require some restoration of the dimension and/or profile in order to achieve a more stable condition. These less stable sections of McKee Creek will be improved through stream enhancement (Level I) practices. The target community along the project site for the vegetated buffer establishment and improvements is the Piedmont alluvial forest.

The property owner currently uses portions of McKee Creek and all of Clear Creek as a water source for his livestock; the livestock have unlimited access to the creeks in these areas. As a result, the Cabarrus County Soil and Water Conservation District will be providing design and construction services for livestock exclusion fencing and alternative water sources.

5.1. Restoration Project Goals and Objectives

The existing stream conditions within the project area are characterized by excess sedimentation, channel incision, bank degradation, and limited riparian buffer. Also, livestock have unlimited access to all of Clear Creek and a portion of the lower reach of McKee Creek, this has significantly contributed to the instability and poor water quality of the project reaches. The project design goals are to restore through stream enhancement (Level I and Level II) McKee Creek, and to restore Clear Creek (Priority I restoration). In order to achieve the design goals, the following objectives have been identified:

- Improve water quality by reducing bank erosion, restricting livestock access to the creeks, and re-establishing the riparian buffer;
- Stabilize McKee Creek through the use of in-stream structures and pattern re-alignment in selected areas;
- Restore the dimension, pattern, and profile of Clear Creek;
- Improve the floodplain functionality of Clear Creek by matching floodplain elevation with bankfull stage;
- Improve the wildlife habitat functions of the site through riparian buffer establishment, improved stream bedform diversity, and improved floodplain functionality.
- Protect the site through a permanent conservation easement along the project reaches.

In order to determine if the project design successfully achieves the objectives listed above, monitoring will be performed on the as-built condition for 5-years. The success of the design streams overall stability and functionality will be determined through cross-section and longitudinal surveys, pebble counts, and photo reference sites. Changes to the physical cross-section and/or longitudinal measurements will be evaluated to determine if they represent a movement toward a more unstable condition. The success of the buffer establishment objective will be measured through photo reference sites, plant survival plots, live stake counts, and tree counts.

5.1.1. Designed Channel Classification

The majority of the Clear Creek design will involve the construction of a new meandering channel; most of the new channel will be placed in the natural low point of the valley. The majority of the design for the upstream section of Clear Creek (first approximately 400 ft of channel) will maintain the existing alignment; except for one severely degraded bend section near the property that will be straightened and stabilized. Due to the established trees, existing channel incision, and potential hydraulic trespass issues, designing a meandering channel was not a feasible option in this upstream section. The design will also maintain the existing channel alignment for the lower section of Clear Creek in order to preserve the existing forested buffer (from near the McKee Creek confluence to approximately 200 ft upstream). The restored Clear Creek stream type will be a Rosgen "C" channel. The "C" type stream results in a more conservative design cross-section that has a higher width/depth ratio or flatter more stable channel side-slopes than the "E" type reference reach. It is extremely challenging to maintain stability in a newly constructed channel that has a low width/depth ratio like an "E" type channel; the "C" type channel design allows the use of a higher and more stable width/depth ratio. Generally the "C" type channel that is designed will begin to narrow and take on the characteristics of the "E" type channel once vegetation has become established.

The design dimension and profile criteria for the Clear Creek design are based on a combination of the reference reach parameters, the project bankfull dimensions, ratios provided by the Army

Corps of Engineers (ACOE) Hydraulic Design of Stream Restoration Project Manual, and the NC Piedmont Rural Regional Curve (Exhibit 3 shows curve comparison). A comparison of the bankfull cross-sectional dimensions determined from the reference reach, project site channel surveys, and the site HEC-RAS hydraulic models relative to the NC Piedmont Rural Regional Curve showed a correlation with other Piedmont streams. This convergence of data provides confidence that the hydraulic geometry relationships used for the Clear Creek design are similar to other stable and properly functioning streams within the same physiographic region.

The design pattern criteria are based on a combination of the reference parameters and the ACOE Manual. Most of the pattern ratios used in the design are within the range of the higher more conservative ACOE values. In comparison to the ACOE values, the reference reach consistently has lower and less conservative pattern ratios due to its dense and established vegetated buffer which provides stability. The ACOE Manual's ratios are based on more of a design condition, or a newly constructed channel without an established vegetated buffer (see Table 4-a, b, and c for the design parameters). Understanding this relationship between the ACOE calculated and reference reach field measured ratios is important when determining the final design criteria.

The proposed Clear Creek design will allow stream flows larger than bankfull to spread onto the floodplain, dissipating flow energies and reducing stress on streambanks. The energy dissipation of the design is further discussed and demonstrated in Section 5.2.2. In-stream structures will be used throughout the reach to control streambed grade, protect banks, and provide bedform diversity for habitat development. Rock cross-vane structures will be needed at the downstream end of the Clear Creek design in order to "step" the restored stream down to the existing invert of the McKee Creek confluence. The streambanks will also be stabilized with a combination of erosion control matting and the planting techniques outlined in Section 5.4.1.

For the sections of McKee Creek that the pattern and/or dimension will be restored, the stream type used will be a Rosgen "C" channel. The design dimension, profile, and pattern criteria are based on the same procedures discussed in the above Clear Creek design paragraphs, but due to a variance in their watershed sizes the reference reach was not used when determining the McKee Creek design parameters. When possible the compiled design parameters were used during the McKee Creek design. However, since only certain pieces or sections of McKee Creek were restored, the design tie-in points of the upstream and downstream portions of the existing stream usually dictated the design profile, pattern, and some of the dimension parameters.

In-stream structures will be used selectively throughout the McKee Creek reaches to control streambed grade, protect banks, and provide bedform diversity for habitat development. Section 5.2.2 further justifies and explains the necessity of restoring certain sections of McKee Creek in order to improve its sediment transport capabilities. Where restoration practices are used on McKee Creek the streambanks will also be stabilized with a combination of erosion control matting and the planting techniques outlined in Section 5.4.1.

5.1.2. Target Buffer Communities

The target community along Clear Creek and Mckee Creek is the Piedmont alluvial forest, as described by Weakley and Schafale in "Classification of the Natural Communities of North Carolina (1990)". The canopy in this type of forest is a mixture of mesophytic and bottomland trees such as: river birch (*Betula nigra*), American sycamore (*Platanus occidentalis*), sweetgum (*Liquidambar styraciflua*), hackberry/sugarberry (*Celtis laevigata*), black walnut (*Juglans nigra*), green ash (*Fraxinus pennsylvanica*), and tulip poplar (*Liriodendron tulipifera*).

5.2. Sediment Transport Analysis

5.2.1. Methodology

A reach-wide pebble count on McKee Creek resulted in a median particle size of 49 mm, which results in a classification for the creek as a very coarse gravel bed stream. As previously stated in Section 3.1 the same design bed characteristics were assumed for both of the McKee Creek project reaches. Due to McKee Creek's classification as a gravel bed stream the design sections were checked for sediment competency, or the stream's ability to move particles of a given size. An aggradation analysis was done on both the existing and design conditions, the required depth and slope needed to transport the largest particle of the riffle subpavement for both conditions was then compared. The methodology for calculating critical dimensionless shear stress and required depth and slope needed to transport the largest particle of the riffle subpavement is from Rosgen's suggested sediment transport competency procedures (Rosgen 2001). The collection of the stream bed pavement and subpavement samples was done using procedures similar to those described by Bunte and Abt (2001). McKee Creek's existing flow conditions used to analyze the sediment transport competency were determined from the McKee Creek HEC-RAS bankfull models (see Tables 8 and 9 for the output).

As previously stated in Section 3.1 the Clear Creek project reach should be classified as a sand bed channel; a bulk sample taken along the project reach showed the median particle size to be coarse sand ($D_{50} = 1.2 \text{ mm}$). Some fine gravel was present below the fine sediments along the project reach, and the stream bed consisted of fine gravel upstream of the project reach. It is probable that once the design condition becomes stable and the impacts of livestock intrusion is alleviated, that the channel bed may consist of fine gravels. However, for purposes of this analysis Clear Creek has been treated as a sand bed stream due to the current presence of fine sediments and the probability of sediment inflow from upstream development that will likely impact the design reach. Furthermore, samples of the fine gravels in the streambed showed that they were on the borderline between very coarse sand and very fine gravels (D_{50} approximately 3.0 mm).

The sediment transport capacity was checked for the Clear Creek design. Sediment transport capacity refers to the stream's ability to move a mass of sediment past a cross section per unit time; stream power is often used to describe capacity. For the purposes of this analysis the techniques described by Nanson and Cooke (1992) were used to calculate stream power (specific stream power in W/m²). The stream power for selected existing cross-sections was compared to the stream power for the design condition cross-sections. Also, the Copeland Method used for stable channel design within HEC-RAS was used to assess whether the design cross-section dimension would aggrade or degrade. Stability curves comparing slope to base width and slope to channel depth were developed using the HEC-RAS design function.

5.2.2. Calculations and Discussion

Tables 11 and 12 display the sediment competency calculation results for McKee Creek, and Exhibits 1 and 2 display the sediment capacity calculation results for Clear Creek. The existing conditions cross-section numbers correspond with the Existing Site Condition plansheets (sheets B - G).

As stated previously in this report, since only certain pieces or sections of McKee Creek were restored, the design tie-in points of the upstream and downstream portions of the existing stream usually dictated the design profile, pattern, and some of the dimension parameters. This should

be considered when reviewing the sediment transport data for McKee Creek; sometimes physical constraints allow the designer to only improve the existing condition, not necessarily correct it altogether.

A sediment transport assessment of the upstream portions of McKee Creek – Reach 1 shows that the existing stream is slightly degrading (the required bankfull mean depth and slope are less than the actual measured values; Table 11). A comparison of the design to the existing conditions shows that the design cross-section dimension and slope will probably lessen the stream degradation in this section. The same assessment of the downstream portions of the reach estimate that the existing stream is definitely aggrading or depositing sediment (the required bankfull mean depth and slope are much higher than the actual measured values; Table 11). A field assessment of McKee Creek – Reach 1 corroborates these findings. This is particularly true in the section from existing station 25+00 to 33+00 (XSC #6, 7, and 8) where the channel dimension has become overly wide with high width/depth ratios (see Table 8 between XSC #6 and 8). A comparison of the design to the existing conditions shows that the design cross-section dimension and slope will improve the streams competency in this aggrading section. This sediment transport analysis for the section from station 25+00 to 33+00 is an important component in justifying the need to redesign the dimension and profile through the section. The negative impacts caused by the excessive deposition in this area to the overall stream functionality must be considered when deciding on the design action.

A sediment transport assessment of McKee Creek – Reach 2 shows that the existing stream is aggrading (the required bankfull mean depth and slope are greater than the actual measured values; Table 11). This is mainly due to the high sinuosity, low channel slope, and cross-section widening caused by the livestock traffic along the banks. Also, the sediment data collected for McKee Creek – Reach 1 was used for Reach 2, this was necessary due to the excessive amount of fine sediment within the reach due to livestock access. Accurate and representative pavement and subpavement samples taken in Reach 2 would probably not demonstrate such a drastic level of aggradation within the reach; as a whole the reach is degrading more than it is aggrading. However, the sediment transport information and methodology was necessary in order to demonstrate the differences between the existing and design conditions. A comparison of the design to the existing conditions shows that the design cross-section dimension and increased slope will help improve the sediment transport competency throughout McKee Creek – Reach 2. The magnitude in which the required mean depth and slope is higher than the actual values is much lower for the design than the existing condition.

A sediment transport analysis was performed on Clear Creek to determine if the stream restoration design would create a stable sand-bed channel that does not excessively aggrade or degrade over time. The degradation potential of the existing stream was compared to the design stream through the use of stream power (W/m^2). As a check, the calculated stream power values for the existing and proposed conditions were compared with values for similar stream and valley types described by Nanson and Croke (1992). The calculated values for Clear Creek compared well with the similar B3b valley type; sands and minor gravel beds in wide alluvial valleys (in their study the range of stream powers were 10 to 60 W/m²). Exhibit 1 demonstrates how the existing channel experiences higher sediment transport rates and specific stream power than the design channel. The design channel will allow flows greater than bankfull to spread out on the floodplain, thus dissipating the excess energy. The maximum stage that is plotted along the X-axis on Exhibit 1 is the stage that will be reached within the floodplain cross-section during the approximate 10-year storm event (Q = 340 cfs). It is evident from the comparison that the incised existing channel will be subject to much higher and erosive energies than the design channel during a given storm duration.

It is clear from the above assessment that the Clear Creek design channel will be subjected to much lower and less erosive stream power than the existing channel. However, this does not answer the question of whether or not the design channel will adequately transport sediment during the bankfull flow condition. A study to understand the design channel's sediment transport capacity, or ability to move a mass of sediment past a cross-section per unit time, is also necessary. Exhibit 2 shows stability curves for Clear Creek that were developed within the HEC-RAS stable channel design function (Copeland Method). The curves compare channel slope to bottom width and channel slope to depth. Theoretically, values plotted above the curve would produce degradation and values plotted below the curve would produce aggradation. The design channel's bottom width (5.9 ft) and depth (2.2) were plotted against the design slope (0.0039) on the curves. The data point plotted close to the curves, but slightly to the degradation side. Having the design channel slightly more erosive than depositional is preferred. This shows that the channel can adequately move its bed load, the potential for slight degradation will be controlled through the use of in-stream structures and established vegetation.

5.3. HEC-RAS Analysis

The output from the HEC-RAS analysis for the project flood study is shown in Appendix 7. The flood study for McKee Creek shows that the proposed design condition will produce a decrease to the 100-year water surface elevation when compared to the existing condition. Since the design condition proposes to remove a large portion of the deposited sediment within the existing channel, the proposed design will result in a substantial decrease to the 100-year water surface elevation. Since a large portion of the Clear Creek design will be priority I, the design condition will cause a slight increase in the 100-year water surface elevation when compared to the incised existing condition. However, the increase in 100-year water surface elevation limits will not exceed the upstream property limits.

A separate HEC-RAS analysis was done on all of the project reaches in order to model the bankfull flow condition. The bankfull model outputs are shown on Tables 8 - 10.

5.3.1. No-rise, LOMR, CLOMR

Clear Creek is impacted from the 100-year backwater elevation from McKee Creek, but it is not a mapped FEMA detailed floodplain. The section of McKee Creek within the project limits is located in a FEMA detailed floodplain. Stream enhancement (Level I) is proposed on sections of the project reach of McKee Creek. Some of the existing sections along McKee Creek project reaches have experienced channel deposition since the cross-sections were surveyed for the original FEMA flood model. Since our proposed design will remove some of the deposited sediment, the proposed 100-year water surface elevation is less than the corrected effective/ existing condition 100-year water surface elevation (decrease greater than 0.1 ft). As a result, it is anticipated that a FEMA Letter of Map Revision (LOMR) will be required at the conclusion of the project's construction; the LOMR will be submitted by the NC EEP. Due to the excessive deposition, the majority of the corrective effective/ existing conditions 100-year water surface elevations are higher than the duplicate effective elevations. The local floodplain administrator for Cabarrus County was contacted (Mike Byrd). Mr. Byrd stated that what he required for us to show compliance was verification that our design would not cause hydraulic trespass issues to the adjacent properties (comparing proposed condition to the existing condition). The proposed design condition meets Mr. Byrd's standards for compliance. However, the NC EEP is mandated by the State of North Carolina to comply with the FEMA rules and regulations which currently

state that if the proposed condition causes more than a 0.1 ft decrease when compared to the corrected effective/existing condition then a LOMR is required.

5.3.2. Hydrologic Trespass

Hydraulic modeling with HEC-RAS has confirmed that hydraulic trespass will not be an issue on the McKee Creek Project. Hydraulic trespass was considered during the design of all the project stream reaches; the designs were altered in order to avoid trespass issues.

5.4. Natural Plant Community Restoration

5.4.1. Narrative & Plant Community Restoration

Plant selection is based on species native to the area and chosen to mimic existing plant material observed on the project and reference site. A mixture of bare root seedlings, live stakes, and a permanent seeding mixture of grasses and forbs will be used to revegatate the area. Refer to Table 7 for the proposed vegetation species, and the Design Sheets for the designated planting areas.

In general, hardwoods will consist of bare root vegetation planted at a target density of 680 stems per acre, spaced on an 8' by 8' grid. Selected species shall be planted according to their wetness tolerance and the anticipated wetness of the planting areas. Bare root trees should be planted during dormancy and installed within two days of being transported to the site. Soil within the target areas shall be disked and loosened prior to planting. Trees shall be planted manually using a planting or dibble bar, mattock, or other approved method for installation. Planting holes must be of sufficient depth to allow proper root development without "J-rooting," and soil will be loosely compacted around the trees.

In areas prone to erosion, including steep banks, live stakes will be used. Stakes shall be installed randomly with respect to species, 2' to 3' apart using triangular spacing along the outside of bends and 4' to 6' apart using triangular spacing along the banks of straight riffle sections (maximum of 20% Black Willow). Stakes shall be selectively placed on existing vegetated stream banks. Live stake material should be dormant, but have the presence of young buds and green bark. Stakes should be 1" to 2" diameter, 2' to 3' in length, with angled bottoms and cut flush on the top with buds oriented upward. Stakes shall be installed either by hammering into the ground with a rubber mallet or by excavating a hole and slipping the stake into it. Stakes shall be tamped in perpendicular to the slope with 4/5 of the stake installed below ground surface. A minimum of two buds must be visible above ground surface. Once installed, soil shall be firmly compacted around the stake and a fresh cut be made on the live stake to promote end growth and vigor. No split stakes are to be used and stakes that split during installation should be replaced.

A permanent seed mixture of native grasses and forbs shall be applied to all disturbed areas of the site. Separate mixtures are provided for stream banks and for flood plain areas. The permanent seed mixture for stream banks shall be applied in order to provide rapid stabilization of constructed stream banks and steep slopes. The permanent seed mixture for floodplains shall be applied to all other disturbed areas, outside of existing tree lines, to provide rapid growth of herbaceous ground cover with a high biological habitat value.

5.4.2. On-site invasive Species Management

Non-native invasive plants can limit the native plant communities' ability to regenerate and be self-dependent. These non-native invasive plants (i.e. Multiflora rose) develop into a dense ground that prohibits the natural regeneration of natural trees, shrubs, and forbs.

The non-native specie, multiflora rose, is present along the banks of McKee Creek. As part of this restoration plan it is recommended that these areas be treated with an herbicide application. The following table indicates the specific herbicide, amount, and time of year it should be applied. The following herbicide applications are foliar sprays which should completely coat the foliage of the target plant. Repeated applications may be required to completely eradicate the target specie from the restoration site.

Herbicides							
HerbicideAmount per 3 gallons of water with surfactantTime of Year							
Escort	0.2 dry ounces	April - June					
Arsenal AC	4 ounces	Aug. – Oct.					
*Glyphosate	8 ounces	May-Oct.					

* Herbicide is not soil active and will not negatively affect surrounding plant species. Multiple applications may be required.

6.0 Performance Criteria

In order to determine if the design streams have successfully achieved the objectives of providing proper channel function and increased habitat quality, monitoring will be performed on the asbuilt conditions for 5-years. The success criteria for the restoration project will follow the rules as presented in the USACOE Stream Mitigation Guidelines (2003). It must be demonstrated that the design channel has been subjected to the channel forming discharge. Therefore, two bankfull events must be documented within the 5-year monitoring period, and the bankfull events must occur in separate years.

6.1. Streams

The success of the design streams overall stability will be monitored through cross-section and longitudinal surveys, pebble counts, and photo reference sites. The photo reference sites will be used to document success by visually verifying that no substantial aggradation, degradation, or bank erosion has occurred during the 5-year monitoring period. Some photo reference sites will also be developed prior to channel construction in order to provide a baseline when comparing before-and-after conditions of the streams. The stream parameters that are physically measured during the monitoring period, such as cross-section surveys, longitudinal surveys, and pebble counts, will be used to confirm the project's channel stability. A successfully designed channel that is stable will show minimal evidence of down-cutting, deposition, bank erosion, or an increase in naturally occurring sands or finer substrate materials. Changes to the physical cross-section and/or longitudinal measurements should be evaluated to determine if they represent a movement toward a more unstable condition.

If substantial aggradation, degradation, bank erosion, and/or evidence of other forms of instability occur, remedial actions will be planned, approved, and implemented.

All of the above measures will be monitored for the sections of McKee Creek that have been restored through stream enhancement (Level I) measures, and for all of the Clear Creek design reach. Only photo reference sites will be used for monitoring for the sections of McKee Creek that have been restored through stream enhancement (Level II), no physical measurements will be taken in these areas.

6.2. Vegetation

The success of the implemented vegetation plan will be monitored through the photo reference sites, plant survival plots, live stake counts, and tree counts. The location and number of vegetation monitoring plots will be determined during the as-built survey. In order for the photo reference sites to document success, they must show at least 75% coverage in the plots. A successful vegetation plot will verify survival and growth of at least 320 stems per acre through year 3, then 10% mortality allowed in year 4 (288 stems per acre), and an additional 10% mortality in year 5 for 260 stems per acre through year 5.

6.3. Schedule / Reporting

An as-built report will be prepared and used as a baseline for all subsequent monitoring. The monitoring and monitoring reports will begin 1 year following completion of the as-built report, and continue for years 2, 3, 4, and 5. A BEHI assessment will also be completed in year 5. The as-built and monitoring reports will include:

- 1. Executive Summary/ Project Abstract;
- 2. Project Background Section which will include project objectives, structure, location and setting, and history and background;
- 3. Project drawings that shall include vegetation and stream issue areas, plans include a Monitoring Plan View and Current Condition Plan View;
- 4. The Project Condition and Monitoring Results which will include details of the stream and vegetation assessment;
- 5. Methodology Section;
- 6. An Exhibit/ Tables Section that will include such tables as the Project Structure Table, Project Activity and Reporting History, Project Contact Table, Project Background Table, Hydrological (Bankfull) Verifications, BEHI and Sediment Export Estimates, Categorical Stream Feature Visual Stability Assessment, Baseline Morphology and Hydraulic Summary, and Morphology and Hydraulic Monitoring Summary;
- 7. An Appendix Section which will include Appendix A Vegetation Raw Data and Appendix B Geomorphologic Raw Data.

7.0 <u>References</u>

Bunte, K., and S. Abt. 2001. Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. Gen. Tech. Rep. RMRS-GTR-74. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Center for Watershed Protection. 2003. Impacts of Impervious Cover on Aquatic Systems. Watershed Protection Research Monograph No. 1. 141 pp.

Common Wetland Plants of North Carolina, North Carolina Department of Environment, Health, and Water Quality, August 1997.

Endangered Species, Threatened Species, Federal Species of Concern, and Candidate Species, Cabarrus County, NC. July 2007. http://www.fws.gov/nc-es/es/countyfr.html

Fridell John A. "Carolina Heelsplitter" U.S. Fish and Wildlife Service. July 2007 http://www.fws.gov/nc-es/es/countyfr.html.

Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith, 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. Wildland Hydrology. AWRA Symposium Proceedings. Edited by: D.S. Olsen and J.P. Potyondy. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT.

Lanfear, K. J. (1990). A fast algorithm for automatically computing Strahler stream order. Water Resources Bulletin, 26(6), 977 - 981.

Lower Yadkin River Basin Local Watershed Planning (Phase II) Report, Rocky River Basin – Preliminary Findings and Recommendations (Reedy Creek Local Watershed – HU 03040105010050). December 10, 2003. Prepared for: NC-WRP; Prepared by: MACTEC Engineering and Consulting, Inc.

Miller, James H. 2003. Nonnative Invasive Plants of Southern Forests – A Field Guide for Identification and Control. Southern Research Station; Asheville, NC.

Mecklenburg County, Post-Construction Stormwater Ordinance. June 30, 2007: 20-22.

Nanson, G.C. and J.C. Croke, 1992. A Genetic Classification of Floodplains. Geomorphology 4 (1992); 459-486.

North Carolina Department of Environment and Natural Resources. 2003b. Division of Water Quality. Biological Assessment Unit. Biological Monitoring of Coddle Creek/Rocky River Watersheds (Yadkin Subbasin 11), Wetlands Restoration Program Studies, July 2003. November 10, 2003.

North Carolina Department of Environment and Natural Resources. 2004. Division of Water Quality. Modeling and TMDL Unit. North Carolina Water Quality Assessment and Impaired Waters List (2004 Integrated 305 (b) and 303 (d) Report. Public Review Draft. http://h2o.enr.state.nc.us/tmdl/General_303d.htm Riparian Forest Buffer Design and Maintenance, Maryland Department of Natural Resources Forest Service, June 2005

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22:169-199.

Rosgen, D.L. and H.L. Silvey. 1996. Applied River Morphology. Wildland Hydrology Books, Fort Collins, CO.

Rosgen, D. L. A Practical Method of Computing Streambank Erosion Rate Proceedings of the Seventh Federal Interagency Sedimentation Conference, Vol. 2, pp. II - 9-15, March 25-29, 2001, Reno, NV

Rosgen, D. L. 2001. A Stream Channel Stability Assessment Methodology. Proceedings of the Federal Interagency Sediment Conference, Reno, NV. March, 2001.

Rosgen, D.L. September, 2006. Watershed Assessment of River Stability & Sediment Supply (WRASSS). <u>http://www.epa.gov/warsss/index.htm</u>.

"Schweintz's Sunflower" U.S. Fish and Wildlife Service. July 2007 <http://www.fws.gov/nc-es/es/countyfr.html>

Schafale, Michael P. and Weakley, Alan S. <u>Classification Of The Natural Communities of North</u> <u>Carolina</u>. Third Approximation. North Carolina National Heritage Program; Division of Parks and Recreation; N.C. Department of Environment, Health, and Natural Resources. 1990.

Soar, Philip J. and Thorne, Colin R. September, 2001. United States Army Corps of Engineers – Engineer Research and Development Center/ Coastal Hydraulics Laboratory (USACOE-ERDC/CHL CR-01-1). Channel Restoration Design for Meandering Rivers. Washington, DC.

United States Army Corps of Engineers, April 2003. Stream Mitigation Guidelines Manual.

United States Army Corps of Engineers Wetland Research Program (WRP) Technical Note VN-RS-4.1, 1997.

Watershed Management Plans & Recommendations – Lower Yadkin/ Upper Rocky River Basin Local Watershed Planning (Phase Two); Cabarrus, Iredell, Rowan, and Mecklenburg Counties. November 30, 2004. Prepared for: NC-EEP; Prepared by: MACTEC Engineering and Consulting, Inc. (http://www.nceep.net/services/lwps/Clarke_Creek/wmp_r04-15-05.pdf).

Wolman, M.G., 1954. A Method of Sampling Course River-Bed Material. Transactions of American Geophysical Union 35: 951-956.

8.0 Tables

	Table 1. Project Restoration Structure and Objectives								
	Project Number D07063S (McKee Creek)								
Restoration Reach ID	Station Range	Restoration Type	Priority Approach	Existing Linear Footage	Designed Linear Footage	Comment			
McKee Reach 1	10+00 - 25+00	Enhancement II	P4	1500 lf	1500 lf	The is a mix of P2 and P4 as designated by the			
McKee Reach 1	25+00 - 29+00	Enhancement I	P2	493 lf	400 lf	stationing.			
McKee Reach 1	29+00 - 46+40	Enhancement II	P4	1740 lf	1740 lf				
		-	McKee Reach 1 Totals	3,733 lf	3,640 lf				
McKee Reach 2	10+00 - 22+86	Enhancement I	P2	847 lf	696 lf	The reach is a mix of P2 and P3, but is mostly dominated by P2. Includes 200 lf of channel relocation.			
Clear Creek	10+69 - 27+76	Restoration	P1	1,513 lf	1,641 lf	Includes 1,351 lf of channel relocation			
			Project Totals	6,093 lf	5,977 lf				

Table 2. Drainage Areas						
Project Number D07063S (McKee Creek)						
ReachDrainage Area (Acres)						
McKee Creek - Reach 1 (at Peach Orchard Rd.)	4,131					
McKee Creek - Reach 2 (at downstream project limits)	4,214					
Clear Creek (at confluence with McKee Creek)	635					

Table 3. Land Use of WatershedsProject Number D07063S (McKee Creek)								
McKee Creek - Reach 1 (at Peach Orchard Rd.)								
Land Use	Acreage	Percentage						
Single-Fam	2,150	52%						
Woods	1,154	28%						
Commercial	114	3%						
Govt-Inst	73	2%						
Warehouse	76	2%						
Pasture	565	14%						
McKee Creek	McKee Creek - Reach 2 (at downstream project limits)							
Land Use	Acreage	Percentage						
Single-Fam	2,147	51%						
Woods	1,166	28%						
Commercial	113	3%						
Govt-Inst	73	2%						
Warehouse	76	2%						
Pasture	640	15%						
Clear Cre	ek (at confluence with McF	Kee Creek)						
Land Use	Acreage	Percentage						
Pasture	60	9%						
Woods	469	74%						
Single-Fam	106	17%						

Table 4-a. Morphological Table - Project Number #D07063S (McKee Creek - Reach 1)							
	Existing C	onditions	Design C	onditions	Other Reference		
	McKee Ci	reek - R1	McKee Creek - R1		ACOE Manual		
Parameter	MIN	MIN MAX		MAX	MIN	MAX	
Drainage Area, DA (sq mi)	4131 ac - 6	4131 ac - 6.45 sq. mi.		5.45 sq. mi.			
Stream Type (Rosgen)	E4	4	C	24			
Bankfull Discharge, Qbkf (cfs)	34	0	3-	40			
Bankfull Riffle XSEC Area, Abkf (sq ft)	68.2	77.6	80).0			
Bankfull Mean Velocity, Vbkf (ft/s)	4.4	5.0	4	.3			
Bankfull Riffle Width, Wbkf (ft)	27.5	31.8	31	1.0			
Bankfull Riffle Mean Depth, Dbkf (ft)	2.10	2.80	2	.6			
Width to Depth Ratio, W/D (ft/ft)	10.2	14.9	12	2.0			
Width Floodprone Area, Wfpa (ft)	75	160	75	160			
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	2.6	5.5	2.4	5.2			
Riffle Max Depth @ bkf, Dmax (ft)	3.5	4.4	3.4	4.4			
Riffle Max Depth Ratio, Dmax/Dbkf	1.4	1.8	1.3	1.7			
Max Depth @ tob, Dmaxtob (ft)	3.5	8.1	3.4	4.4			
Bank Height Ratio, Dtob/Dmax (ft/ft)	1.0	2.1	1	.0			
Meander Length, Lm (ft)	101	305	235	350			
Meander Length Ratio, Lm/Wbkf *	3.5	10.5	7.6	11.3	11.3	12.5	
Radius of Curvature, Rc (ft)	48	195	62	108			
Rc Ratio, Rc/Wbkf *	1.6	6.7	2.0	3.5	1.5	4.5	
Belt Width, Wblt (ft)	65	145	93	139			
Meander Width Ratio, Wblt/Wbkf *	2.2	5.0	3.0	4.5			
Sinuosity, K	1.2	28	1.	16			
Valley Slope, Sval (ft/ft)	0.00)37	0.0	037			
Channel Slope, Schan (ft/ft)	0.00)29	0.0	032			
Slope Riffle, Srif (ft/ft)	0.0055	0.0131	0.0061	0.0106			
Riffle Slope Ratio, Srif/Schan	1.9	4.5	1.9	3.3			
Slope Pool, Spool (ft/ft)	0.0006	0.0009	0.0006	0.0013			
Pool Slope Ratio, Spool/Schan	0.20	0.30	0.20	0.40			
Pool Max Depth, Dmaxpool (ft)	3.1	6.4	5.2	7.7			
Pool Max Depth Ratio, Dmaxpool/Dbkf	1.3	2.6	2.0	3.0	2.5	4.5	
Pool Width, Wpool (ft)	29.1	58.2	37.2	43.4			
Pool Width Ratio, Wpool/Wbkf	1.0	2.0	1.2	1.4	1.3	1.4	
Pool-Pool Spacing, Lps (ft)	50.0	205.0	123.9	216.9			
Pool-Pool Spacing Ratio, Lps/Wbkf	1.7	7.0	4.0	7.0	5.0	7.0	
d16 (mm)	0.	0.7 0.7					
d35 (mm)	27	.8	27	7.8			
d50 (mm)	49	.4	49.4				
d84 (mm)	83	.2	83.2			1	
d95 (mm)	109	9.5	10	9.5			

Table 4-b. Morphological Table - Project Number #D07063S (McKee Creek - Reach 2)							
	Existing C	onditions	Design C	Conditions	Other Reference		
	McKee Ci	reek - R2	McKee Creek - R2		ACOE Manual		
Parameter	MIN	MIN MAX		MAX	MIN	MAX	
Drainage Area, DA (sq mi)	4214 ac - 6.	4214 ac - 6.58 sq. mi.		5.58 sq. mi.			
Stream Type (Rosgen)	E4	4	(24			
Bankfull Discharge, Qbkf (cfs)	35	0	3	50			
Bankfull Riffle XSEC Area, Abkf (sq ft)	78.5	88.0	8:	5.0			
Bankfull Mean Velocity, Vbkf (ft/s)	4.0	4.5	4	.1			
Bankfull Riffle Width, Wbkf (ft)	25.5	26.8	3	1.9			
Bankfull Riffle Mean Depth, Dbkf (ft)	3.10	3.30	2	7			
Width to Depth Ratio, W/D (ft/ft)	8.1	8.3	12	2.0			
Width Floodprone Area, Wfpa (ft)	150	205	150	205			
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	5.7	7.9	4.7	6.4			
Riffle Max Depth @ bkf, Dmax (ft)	4.4	4.8	3.5	4.5			
Riffle Max Depth Ratio, Dmax/Dbkf	1.4	1.5	1.3	1.7			
Max Depth @ tob, Dmaxtob (ft)	4.5	5.6	3.5	4.5			
Bank Height Ratio, Dtob/Dmax (ft/ft)	1.0	1.2	1	.0			
Meander Length, Lm (ft)	208	377	243	447			
Meander Length Ratio, Lm/Wbkf *	8.0	14.4	7.6	14.0	11.3	12.5	
Radius of Curvature, Rc (ft)	95	240	64	144			
Rc Ratio, Rc/Wbkf *	3.6	9.2	2.0	4.5	1.5	4.5	
Belt Width, Wblt (ft)	135	240	96	287			
Meander Width Ratio, Wblt/Wbkf *	5.0	9.2	3.0	9.0			
Sinuosity, K	1.5	50	1.	17			
Valley Slope, Sval (ft/ft)	0.00)27	0.0	027			
Channel Slope, Schan (ft/ft)	0.00)18	0.0	023			
Slope Riffle, Srif (ft/ft)	0.0130	0.0200	0.0044	0.0076			
Riffle Slope Ratio, Srif/Schan	5.9	9.1	1.9	3.3			
Slope Pool, Spool (ft/ft)	0.0002	0.0004	0.0002	0.0005			
Pool Slope Ratio, Spool/Schan	0.10	0.20	0.10	0.20			
Pool Max Depth, Dmaxpool (ft)	6.5	6.5	5.3	8.0			
Pool Max Depth Ratio, Dmaxpool/Dbkf	2.0	2.0	2.0	3.0	2.5	4.5	
Pool Width, Wpool (ft)	32.6	32.6	38.3	44.7			
Pool Width Ratio, Wpool/Wbkf	1.2	1.2	1.2	1.4	1.3	1.4	
Pool-Pool Spacing, Lps (ft)	45.0	180.0	127.7	223.6			
Pool-Pool Spacing Ratio, Lps/Wbkf	1.7	6.9	4.0	7.0	5.0	7.0	
d16 (mm)	0.	0.7 0.7					
d35 (mm)	27.	.8	2	7.8			
d50 (mm)	49.	.4	49.4				
d84 (mm)	83.	.2	83	3.2			
d95 (mm)	109	9.5	10	9.5			

Table 4-c.	Morphological Ta	ble - Projec	t Number #	D07063S (0	Clear Creek	x)				
	Existing C	isting Conditions Design		Design Conditions		Reference Reach		Other Reference		
	Clear Creek Clear Creek				Branch	ACOE Manual				
Parameter	MIN			MIN	MAX	MIN	MAX			
Drainage Area, DA (sq mi)		635 ac - 0.99 sq. mi. 635 ac - 0.99 sq. mi. 35		350 ac - 0.55 sq. mi.						
Stream Type (Rosgen)	E/C			24	E4					
Bankfull Discharge, Qbkf (cfs)	89)	89		89		4	1		
Bankfull Riffle XSEC Area, Abkf (sq ft)	21.8	24.8	2:	5.0	11.3	13.2				
Bankfull Mean Velocity, Vbkf (ft/s)	3.3	3.9	3	.6	3	.6				
Bankfull Riffle Width, Wbkf (ft)	11.5	16.7	1'	7.3	7.9	13.9				
Bankfull Riffle Mean Depth, Dbkf (ft)	1.30	2.00	1	.4	0.80	1.40				
Width to Depth Ratio, W/D (ft/ft)	5.8	12.8	12	2.0	5.4	10.8				
Width Floodprone Area, Wfpa (ft)	50	150	90	190	35	100				
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	3.8	11.3	5.2	11.0	3.1	8.9				
Riffle Max Depth @ bkf, Dmax (ft)	2.6	3.1	2.2	2.5	1.8	2.0				
Riffle Max Depth Ratio, Dmax/Dbkf	1.5	1.7	1.5	1.7	1.7	1.9				
Max Depth @ tob, Dmaxtob (ft)	3.7	6.1	2.1	2.4	2.0	2.9				
Bank Height Ratio, Dtob/Dmax (ft/ft)	1.4	2.3	1	.0	1.1	1.5				
Meander Length, Lm (ft)	45	75	132	196	48	85				
Meander Length Ratio, Lm/Wbkf *	3.4	5.6	7.6	11.3	4.3	7.6	11.3	12.5		
Radius of Curvature, Rc (ft)	15	25	35	52	6	22				
Rc Ratio, Rc/Wbkf *	1.1	1.9	2.0	3.0	0.5	2.0	1.5	4.5		
Belt Width, Wblt (ft)	35	47	52	78	29	50				
Meander Width Ratio, Wblt/Wbkf *	2.6	3.5	3.0	4.5	2.6	4.5				
Sinuosity, K	1.1	2	1.	21	1.	30				
Valley Slope, Sval (ft/ft)	0.00	47	0.0	047	0.0	072				
Channel Slope, Schan (ft/ft)	0.00	42	0.0	039	0.0055					
Slope Riffle, Srif (ft/ft)	0.0059	0.0084	0.0055	0.0086	0.0120	0.0180				
Riffle Slope Ratio, Srif/Schan	1.4	2.0	1.4	2.2	2.2	3.3				
Slope Pool, Spool (ft/ft)	0.0008	0.0025	0.0008	0.0016	0.0019	0.0022				
Pool Slope Ratio, Spool/Schan	0.20	0.60	0.20	0.40	0.30	0.40				
Pool Max Depth, Dmaxpool (ft)	2.8	3.3	2.9	4.3	2.1	2.5				
Pool Max Depth Ratio, Dmaxpool/Dbkf	1.6	1.9	2.0	3.0	2.0	2.3	2.5	4.5		
Pool Width, Wpool (ft)	21.9	23.4	20.8	24.2	10.3	13.8				
Pool Width Ratio, Wpool/Wbkf	1.6	1.8	1.2	1.4	0.9	1.2	1.3	1.4		
Pool-Pool Spacing, Lps (ft)	57.5	116.9	69.3	121.2	10.0	45.0				
Pool-Pool Spacing Ratio, Lps/Wbkf	5.0	7.0	4.0	7.0	0.9	4.0	5.0	7.0		
d16 (mm)	0.3			0.4		.3				
d35 (mm)	0.7			.3		.0				
d50 (mm)	1.2			.0).1				
d84 (mm)	3.2			4.0).3				
d95 (mm)	6.0			8.0		0.0				

	Tabl	le 5. BEHI N							Projec D070638		Strean	ns			
Time Point	Segment/Reach	Linear Footage or Acreage	Γυτρογιο		4~:11	very mign	T∼:III	ាមព	otomoloo M	IVIOUEI AUC	I	LUW		V егу дом	Sediment Export
			ft	%	ft	%	ft	%	ft	%	ft	%	ft	%	Ton/y
Pre-Construction	McKee Creek Reach 1	3759			88	2.3	494	13.1	1175	31.3	533	14.2	1469	39.1	302.5
	McKee Creek Reach 2	1623					496	30.6	686	42.3			441	27.2	305.8
	Clear Creek	1566			68	4.3	231	14.8	97	6.2			1170	74.7	36.5
	Project Total	6948			156	2.2	1221	17.6	1958	28.2	533	7.7	3080	44.3	644.8

	Tal	ble 6. BEH				-		ates foi oject # I			Strean	1			
Time Point	Segment/Reach	Linear Footage or Acreage		Extreme		very mign	+~;II	ករពួព	o pomo Po JM	Moderate	,	TOW	j L	very Low	Sediment Export
	-		ft	%	ft	%	ft	%	ft	%	ft	%	ft	%	Ton/y
Survey	Dixon Branch	352							157	44.6	112	31.8	14	4.0	1.9
	Project Total	352							157	44.6	112	31.8	14	4.0	1.9

	Bare Root Se		,	
	plain for Restoration a		reas)	
Scientific Name	Common			Tolerance
Betula nigra	River Birc			FACW
Carya aquatica	Water Hicl			OBL
Celtis laevigata	Sugarberry			FACW
Fraxinus pennsylvanica	Green Ash			FACW
Juglans nigra	Black Wal	nut		FAC
Liriodendron tulipifera	Tulip Popl	ar		FAC
Platanus occidentalis	Sycamore			FAC-
Quercus michauxii	Swamp Ch	estnut Oak		FACW-
	Live Sta	kos		
(Stream banks for	r Restoration Area and		anceme	ent Areas)
Scientific Name	Common M Buttonbush			Tolerance OBL
Cephalanthus occidentalis				FACW+
Cornus amomum	Silky Dogw			
Salix nigra Sambucus canadensis	Black Wille	DW		OBL FACW-
Sambucus canadensis	Elderberry			FACW-
Str	eam Banks Perman	ent Seed Mixtu	re	
(Restoration Are	a and re-graded channe	el sections in Enha	ncemen	nt Areas)
Scientific Name	Common Name	% of Mixture	Seed	ing Density (lbs./ac.)
Andropogon glomeratus	Bushy Beard Grass	20%	2	
Bidens aristosa	Beggar Ticks	10%	2	
Dichanthelium clandestinum	Deer Tongue	15%	3	
Elymus virginicus	Virginia Wild Rye	25%	2	
Juncus effusus	Soft Rush	15%	2	
Panicum virgatum	Switch Grass	10%	3	
Tripsacum dactyloides	Gamma Grass	5%	3	
	laad Dlain Darmana	nt Good Minton		
	lood Plain Permane Restoration Area and E			
U.	Restoration Area and E	imancement Area)		
Scientific Name	Common Name	% of Mixture		ing Density (lbs./ac.)
Andropogon gerardii	Big Blue Stem	15%	12-15	5
Bidens aristosa	Beggar Ticks	10%	12-15	5
Carex vulpinoidea	Fox Sedge	25%	12-15	5
Chamaecrista fasciulata	Partridge Pea	15%	12-15	5
F 1	Vincinia Wild Dua	150/	12.14	٢

Virginia Wild Rye

Little Blue Stem

Elymus virginicus

Schizachyrium scoparium

15%

20%

12-15

12-15

Table 7. Designed Vegetative Communities

River Sta	Profile	Q Total	W.S. Elev	E.G. Slope	Max Chl Dpth	Hydr Depth C	Flow Area Ch	W.P. Channel	Hydr Radius C	Top W Chnl	Vel Chnl	Shear Chan	Power Chan	Power Chan	W/D	Cross
		(cfs)	(ft)	(ft/ft)	(ft)	(ft)	(sq ft)	(ft)	(ft)	(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)	(W/m^2)	Ratio	Section #
3048.3	BKFL	340	593.87	0.001114	4.56	3.52	124	37.7	3.29	35.25	2.74	0.23	0.63	9.2	10.0	
2996.3	BKFL	340	593.81	0.001203	5.47	3.18	127.05	42.45	2.99	39.93	2.68	0.22	0.6	8.7	12.6	
2930.8	BKFL	340	593.63	0.001864	4.74	3.51	97.88	30.71	3.19	27.87	3.47	0.37	1.29	18.8	7.9	
2842.0	BKFL	340	593.4	0.002451	4.42	3.37	88.14	29.02	3.04	26.15	3.86	0.46	1.79	26.1	7.8	#1
2760.1	BKFL	340	593.14	0.002987	5.24	3.18	83.09	29.03	2.86	26.09	4.09	0.53	2.18	31.7	8.2	
2688.4	BKFL	340	593.01	0.001964	4.9	3.8	94.92	29.57	3.21	25	3.58	0.39	1.41	20.5	6.6	
2621.5	BKFL	340	592.96	0.001309	6.55	3.5	119.83	39.06	3.07	34.28	2.84	0.25	0.71	10.3	9.8	
2538.8	BKFL	340	592.81	0.001516	6.44	3.71	107	32.86	3.26	28.87	3.18	0.31	0.98	14.3	7.8	
2491.5	BKFL	340	592.71	0.00175	6.32	3.61	100.39	31.2	3.22	27.84	3.39	0.35	1.19	17.3	7.7	
2424.0	BKFL	340	592.52	0.002276	5.87	3.62	89.08	28.19	3.16	24.62	3.82	0.45	1.71	24.9	6.8	#2
2352.3	BKFL	340	592.41	0.001834	5.25	3.44	100.12	32.11	3.12	29.14	3.4	0.36	1.21	17.6	8.5	
2288.5	BKFL	340	592.31	0.001772	6.02	3.17	107.32	37.22	2.88	33.8	3.17	0.32	1.01	14.7	10.7	
2197.5	BKFL	340	592.17	0.001477	5.93	3.81	108.66	33.48	3.25	28.54	3.13	0.3	0.94	13.7	7.5	
2122.0	BKFL	340	591.96	0.002232	5.14	3.48	91.79	29.93	3.07	26.39	3.7	0.43	1.58	23.0	7.6	
2044.7	BKFL	340	591.84	0.001689	5.04	3.67	101.09	30.91	3.27	27.54	3.36	0.34	1.16	16.9	7.5	
1968.1	BKFL	340	591.61	0.00285	4.14	2.97	86.86	31.32	2.77	29.26	3.91	0.49	1.93	28.1	9.9	
1912.4	BKFL	340	591.39	0.003163	4.69	3.25	79.32	26.98	2.94	24.41	4.29	0.58	2.49	36.3	7.5	
1848.9	BKFL	340	591.32	0.001759	4.85	3.49	100.77	31.62	3.19	28.89	3.37	0.35	1.18	17.2	8.3	
1769.5	BKFL	340	591.21	0.00138	5.09	3.94	107.8	31.2	3.45	27.36	3.15	0.3	0.94	13.7	6.9	
1701.4	BKFL	340	591.05	0.002016	5.93	3.56	95.32	30.48	3.13	26.8	3.57	0.39	1.4	20.4	7.5	
1631.9	BKFL	340	590.94	0.001598	5.47	3.7	102.69	30.85	3.33	27.74	3.31	0.33	1.1	16.0	7.5	
1558.3	BKFL	340	590.79	0.002043	5.71	3.2	98.52	33.44	2.95	30.79	3.45	0.38	1.3	18.9	9.6	
1515.7	BKFL	340	590.76	0.001275	6.17	3.74	114.28	34.03	3.36	30.59	2.98	0.27	0.8	11.6	8.2	
1471.1	BKFL	340	590.66	0.00174	5.93	3.6	102.41	32.65	3.14	28.41	3.32	0.34	1.13	16.5	7.9	
1381.7	BKFL	340	590.55	0.00131	5.59	3.27	120.06	39.28	3.06	36.77	2.83	0.25	0.71	10.3	11.2	
1334.2	BKFL	340	590.43	0.001631	5.32	3.73	101.45	30.39	3.34	27.22	3.35	0.34	1.14	16.6	7.3	
1284.9	BKFL	340	590.28	0.002239	5.14	3.71	88.88	27.68	3.21	23.98	3.83	0.45	1.72	25.0	6.5	#5
1209.4	BKFL	340	590.18	0.001545	5.17	3.96	102.59	30	3.42	25.89	3.31	0.33	1.09	15.9	6.5	
1135.3	BKFL	340	589.88	0.003464	5.57	3.05	78.91	28.52	2.77	25.86	4.31	0.6	2.58	37.6	8.5	
1069.8	BKFL	340	589.81	0.001735	5.76	3.54	100.45	31.05	3.24	28.39	3.38	0.35	1.19	17.3	8.0	
994.3	BKFL	340	589.63	0.002146	5.43	3.43	92.54	29.66	3.12	26.98	3.67	0.42	1.54	22.4	7.9	
923.8	BKFL	340	589.49	0.001997	5.14	3.35	96.63	31.31	3.09	28.84	3.52	0.38	1.35	19.7	8.6	
861.7	BKFL	340	589.45	0.001117	6.32	3.93	117.33	32.9	3.57	29.84	2.9	0.25	0.72	10.5	7.6	
808.3	BKFL	340	589.17	0.00356	4.72	3.01	77.9	28.19	2.76	25.92	4.36	0.61	2.68	39.0	8.6	
745.7	BKFL	340	588.96	0.003534	4.1	2.77	81.27	31.17	2.61	29.37	4.18	0.58	2.41	35.1	10.6	
680.1	BKFL	340	588.71	0.004073	4.57	2.44	81.49	34.9	2.33	33.43	4.17	0.59	2.48	36.1	13.7	#6
638.2	BKFL	340	587.9	0.018134	3.03	1.64	49.87	31.34	1.59	30.41	6.82	1.8	12.28	178.8	18.5	
613.3	BKFL	340	587.82	0.010622	2.09	1.41	70.99	50.74	1.4	50.2	4.79	0.93	4.44	64.6	35.6	4 7
565.3	BKFL	340	587.59	0.005309	4.57	1.49	98	67.53	1.45	65.73	3.47	0.48	1.67	24.3	44.1	#7
519.4	BKFL	340	587.46	0.002298	3.51	2.24	112.58	50.97	2.21	50.15	3.02	0.32	0.96	14.0	22.4	
491.9	BKFL	340	587.42	0.002128	3.91	2.16	120.6	57.16	2.11	55.78	2.82	0.28	0.79	11.5	25.8	
425.6	BKFL	340	587.05	0.004355	4.04	2.36	80.83	35.97	2.25	34.24	4.21	0.61	2.57	37.4	14.5	
372.2	BKFL	340	586.76	0.004419	4.86	2.76 2.72	74.22	29.37	2.53	26.92	4.58	0.7	3.19	46.4	9.8	
314.5 239.1	BKFL BKFL	340	586.5	0.00443	4.48	2.72	73.7	28.91	2.55 1.75	27.11	4.61	0.7	3.25 1.48	47.3 21.5	10.0	
239.1	BKFL	340 340.0	586.29 586.01	0.003978	4.26 3.6	1.84	99.78 76.39	56.89 46.82	1.75	54.26 45.06	3.41 4.45	0.44	2.59	21.5	29.5 26.5	#8
188.1	BKFL	340.0 340	585.35	0.005721	2.57	1.7	51.03	34.3	1.63	45.06	4.45	1.76	2.59	170.6	26.5	#0
188.1	BKFL	340 340	585.42	0.018934	4.83	3.06	97.08	34.3	2.85	32.91	3.5	0.39	1.37	170.6	10.4	
79.1	BKFL	340 340	585.08	0.002197	4.83	3.06	70.59	25.33	2.85	22.42	3.5 4.82	0.39	3.59	52.3	7.1	
20.8	BKFL	340 340	585.08 584.87	0.004288	4.21	3.15	70.59	25.33	2.79	22.42	4.82	0.75	3.59	52.3 44.3	8.1	
20.0	DNLL	340	304.07	0.004003	4.23	3.04	74.92	21.92	2.00	24.04	4.34	0.07	3.04	44.3	0.1	

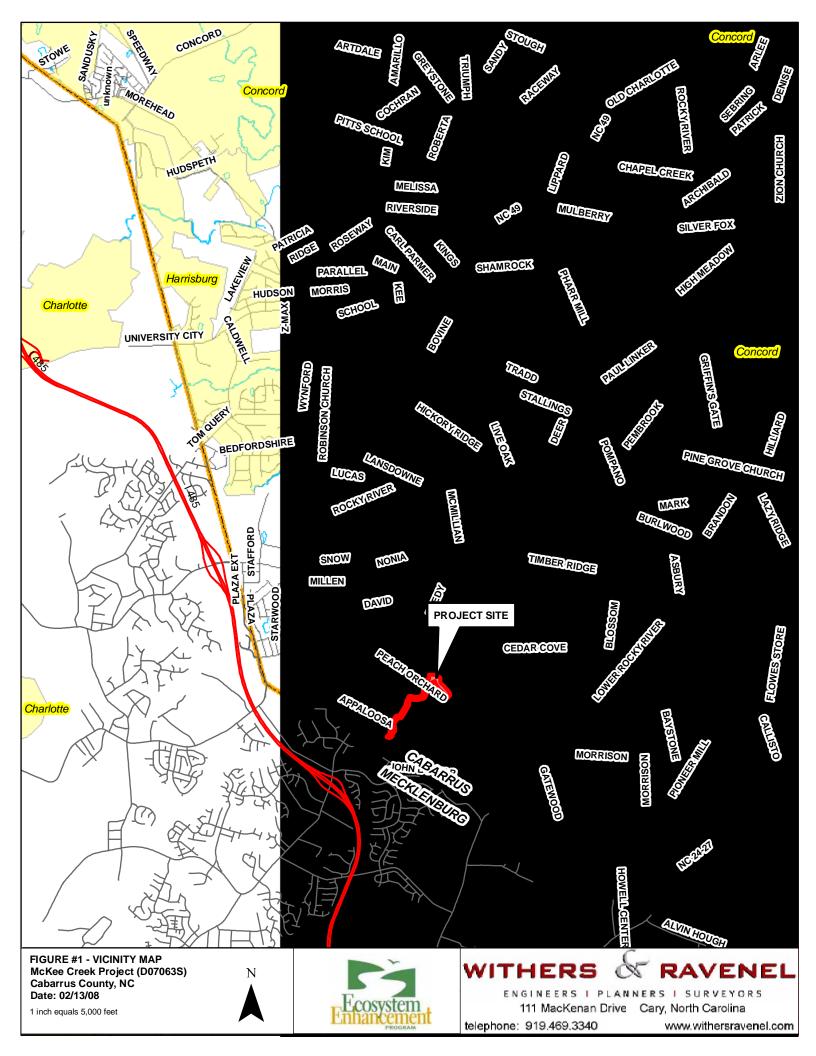
Table 8. McKee Creek - Reach #1 (HEC-RAS Bankfull Model Output)

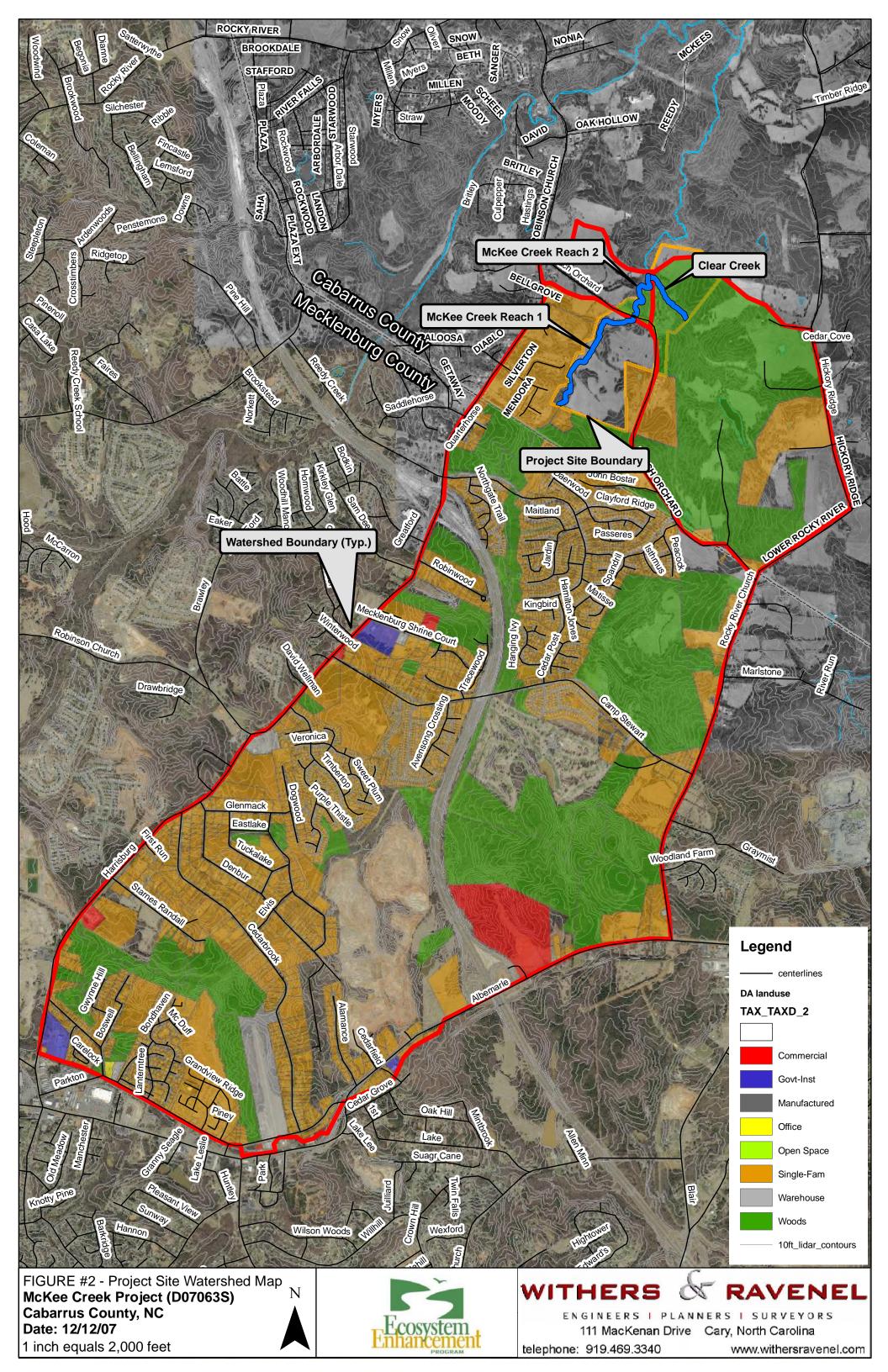
River Sta	Profile	Q Total	W.S. Elev	E.G. Slope	Max Chl Dpth	Hydr Depth C	Flow Area Ch	W.P. Channel	Hydr Radius C	Top W Chnl	Vel Chnl	Shear Chan	Power Chan	W/D	Cross
		(cfs)	(ft)	(ft/ft)	(ft)	(ft)	(sq ft)	(ft)	(ft)	(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)	Ratio	Section #
1504.877	BKFL	350	580.98	0.000953	4.94	3.03	133.38	47.09	2.83	44.05	2.62	0.17	0.4	15.6	
1452.157	BKFL	350	580.87	0.001573	4.52	2.61	113.28	45.58	2.49	43.36	3.09	0.24	0.8	17.4	
1384.994	BKFL	350	580.81	0.000924	5.8	3.38	125.43	39.45	3.18	37.09	2.79	0.18	0.5	11.7	
1331.401	BKFL	350	580.76	0.000986	4.35	3.19	120.27	39.48	3.05	37.68	2.8	0.19	0.5	12.4	
1287.24	BKFL	350	580.77	0.000603	6.05	2.86	172.06	63.87	2.69	60.11	2.02	0.1	0.2	22.3	Check
1233.479	BKFL	350	580.55	0.001669	4.56	3.41	94.36	30.19	3.13	27.71	3.71	0.33	1.2	8.9	
1184.566	BKFL	350	580.56	0.000763	5.55	4.02	126.21	34.72	3.63	31.43	2.77	0.17	0.5	8.7	
1139.055	BKFL	350	580.49	0.001101	5.69	3.5	114.56	35.88	3.19	32.7	3.05	0.22	0.7	10.3	
1102.629	BKFL	350	580.39	0.00187	6.44	3.22	99.14	37.22	2.66	30.77	3.53	0.31	1.1	11.6	Check
1063.159	BKFL	350	580.29	0.001779	5.54	3.36	93.45	30.89	3.02	27.8	3.75	0.34	1.3	9.2	
983.344	BKFL	350	579.86	0.004409	3.96	2.76	67.96	27.52	2.47	24.59	5.15	0.68	3.5	10.0	#9
949.768	BKFL	350	579.88	0.002247	6.28	3.22	88.36	31.99	2.76	27.4	3.96	0.39	1.5	9.9	
905.854	BKFL	350	579.84	0.001439	5.45	3.57	99.83	31.09	3.21	27.94	3.51	0.29	1.0	8.7	
858.974	BKFL	350	579.68	0.002258	4.93	3.18	85.48	29.57	2.89	26.86	4.09	0.41	1.7	9.3	
803.61	BKFL	350	579.69	0.001089	3.84	2.83	125.85	45.7	2.75	44.42	2.75	0.19	0.5	16.2	
747.785	BKFL	350	579.51	0.002002	4.23	2.96	94.02	34.28	2.74	31.75	3.72	0.34	1.3	11.6	
686.937	BKFL	350	579.26	0.003024	4.16	2.79	79.37	30.57	2.6	28.44	4.41	0.49	2.2	10.9	
630.637	BKFL	350	579.18	0.002091	3.73	2.84	93.88	35.27	2.66	33.03	3.73	0.35	1.3	12.4	
586.045	BKFL	350	579.05	0.002362	4.32	2.82	87.58	32.57	2.69	31.07	3.99	0.4	1.6	11.6	
536.77	BKFL	350	579.04	0.001166	4.62	3.27	115.96	38.59	3	35.42	3.02	0.22	0.7	11.8	
486.744	BKFL	350	578.95	0.001299	5.47	3.48	105.14	32.77	3.21	30.24	3.33	0.26	0.9	9.4	
436.747	BKFL	350	578.77	0.002457	4.72	2.91	86.7	32.64	2.66	29.81	4.04	0.41	1.7	11.2	#11
390.268	BKFL	350	578.62	0.0028	4.29	2.86	82.27	31.57	2.61	28.77	4.25	0.46	1.9	11.0	
348.811	BKFL	350	578.48	0.002982	4.47	2.88	80.14	30.99	2.59	27.81	4.37	0.48	2.1	10.7	
293.013	BKFL	350	578.5	0.001038	4.26	3.43	118.57	37.39	3.17	34.53	2.95	0.21	0.6	10.9	
238.354	BKFL	350	578.24	0.002888	4.01	2.77	81.1	31.17	2.6	29.25	4.32	0.47	2.0	11.3	
183.705	BKFL	350	578.14	0.002329	5.33	3.04	88.2	32.72	2.7	29	3.97	0.39	1.6	10.7	
131.688	BKFL	350	578.05	0.001824	5.75	3.27	95.52	33.25	2.87	29.17	3.66	0.33	1.2	10.2	
87.574	BKFL	350	577.8	0.003649	3.63	2.63	75.37	30.93	2.44	28.67	4.64	0.56	2.6	11.8	
38.737	BKFL	350	577.67	0.003	4.29	2.88	79.32	30.34	2.61	27.58	4.41	0.49	2.2	10.6	

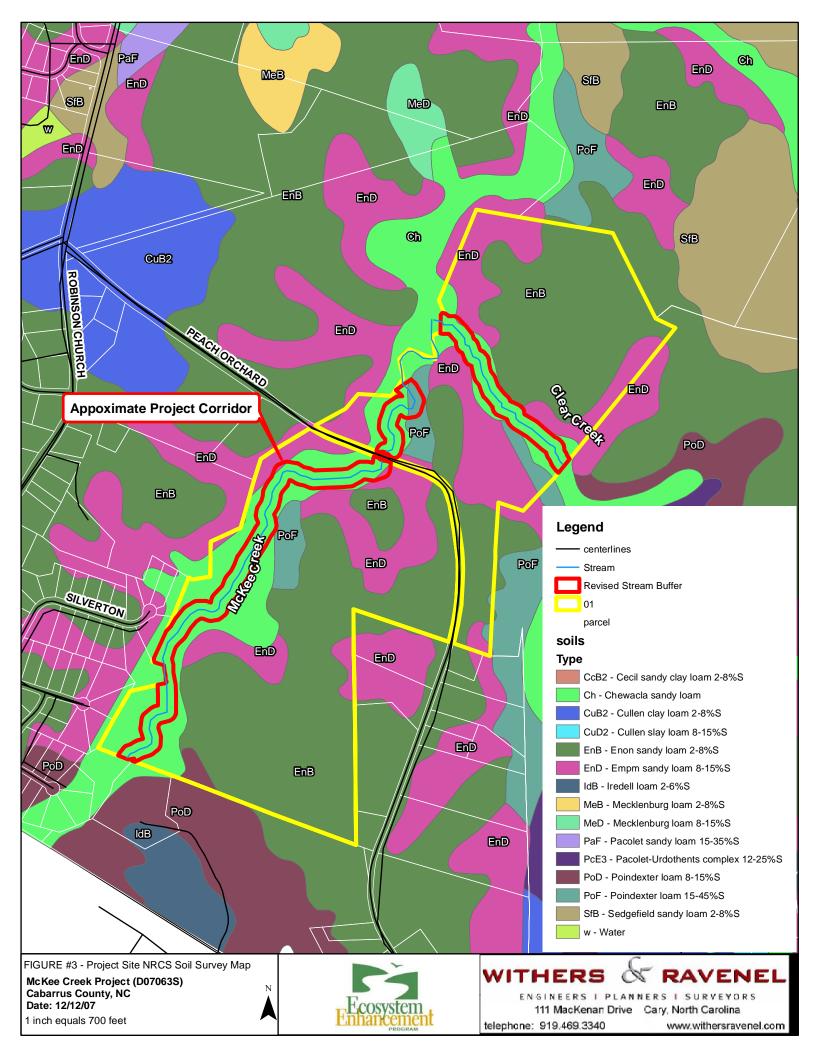
 Table 9. McKee Creek - Reach #2 (HEC-RAS Bankfull Model Output)

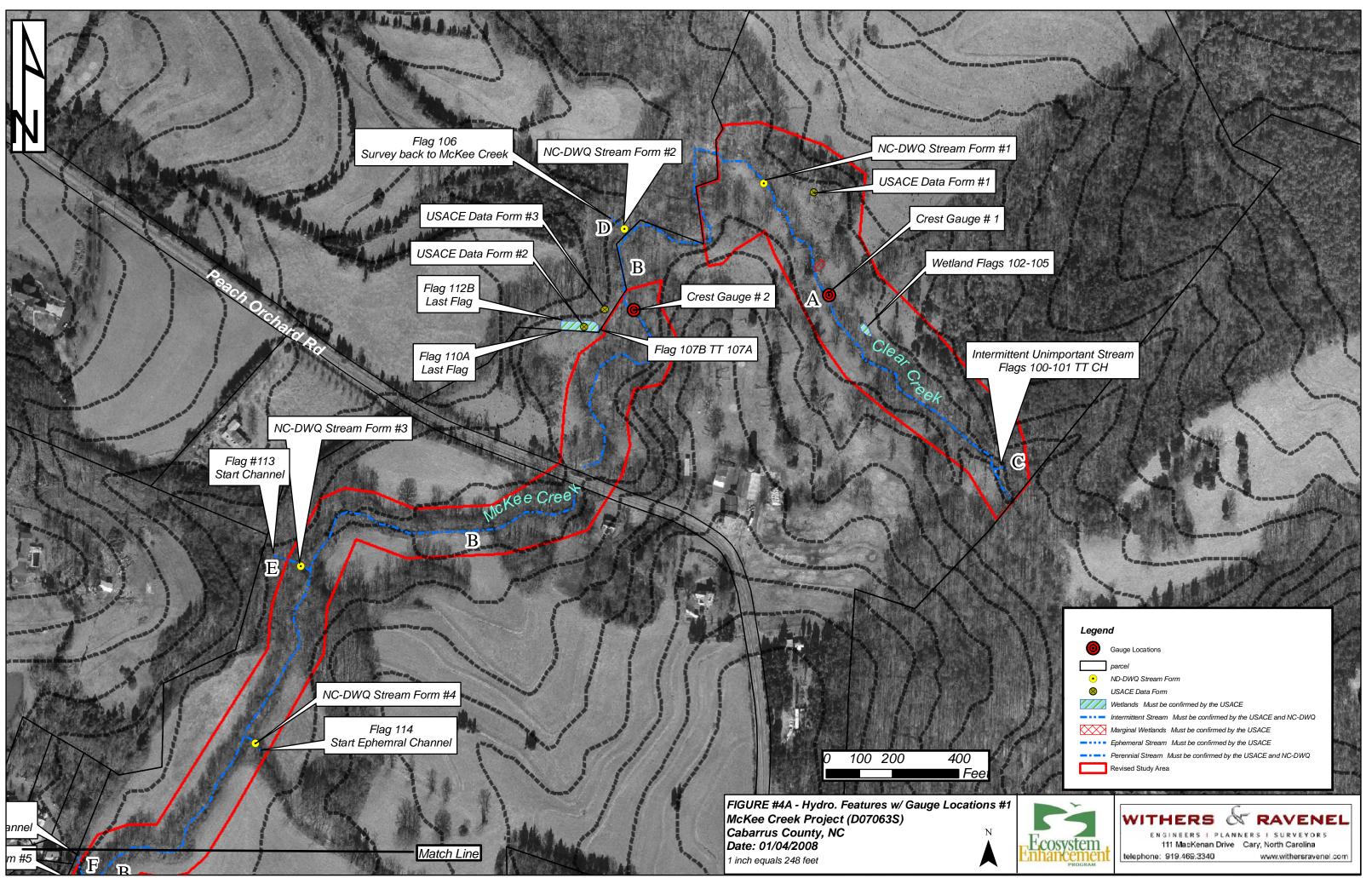
River Sta	Profile	Q Total	W.S. Elev	E.G. Slope	Max Chl Dpth	Hydr Depth C	Flow Area Ch	W.P. Channel	Hydr Radius C	Top W Chnl	Vel Chnl	Shear Chan	Power Chan	W/D	Cross
		(cfs)	(ft)	(ft/ft)	(ft)	(ft)	(sq ft)	(ft)	(ft)	(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)	Ratio	Section #
1543.267	BKFL	89	583.39	0.008295	2.6	1.32	19.01	15.58	1.22	14.44	4.68	0.63	3.0	11.8	#1
1487.218	BKFL	89	583.12	0.004623	2.56	1.64	22.51	15.34	1.47	13.69	3.95	0.42	1.7	9.3	#2
1444.336	BKFL	89	583.11	0.001609	2.99	1.89	34.29	19.9	1.72	18.16	2.6	0.17	0.5	10.6	
1364.241	BKFL	89	582.87	0.002999	2.34	1.61	27.52	18.32	1.5	17.11	3.23	0.28	0.9	11.4	
1293.322	BKFL	89	582.63	0.003283	2.63	1.7	25.89	16.83	1.54	15.23	3.44	0.32	1.1	9.9	
1214.657	BKFL	89	582.03	0.007299	3.03	1.87	17.71	11.85	1.49	9.45	5.03	0.68	3.4	6.3	
1140.916	BKFL	89	581.68	0.004818	2.59	1.84	21.03	13.35	1.58	11.4	4.23	0.47	2.0	7.2	#3
1069.104	BKFL	89	581.52	0.00267	2.26	1.55	29.7	20.33	1.46	19.17	3	0.24	0.7	13.1	#4
972.654	BKFL	89	581.1	0.004003	2.71	1.83	22.7	14.06	1.61	12.44	3.92	0.4	1.6	7.7	#5
885.923	BKFL	89	580.78	0.004538	2.62	1.21	27.3	24.49	1.11	22.59	3.26	0.32	1.0	20.4	
778.451	BKFL	89	580.62	0.001106	3.7	2.19	37.92	19.33	1.96	17.35	2.35	0.14	0.3	8.9	
680.988	BKFL	89	580.41	0.002038	3.29	2.32	28.28	14.87	1.9	12.17	3.12	0.24	0.8	6.4	
595.63	BKFL	89	580.4	0.000579	3.96	2.55	41.04	18.62	2.2	16.12	1.83	0.08	0.2	7.3	
536.342	BKFL	89	580.39	0.000195	5.25	3.26	58.68	21.08	2.78	18	1.24	0.03	0.0	6.5	
509.212	BKFL	89	578.3	0.002172	3.33	2.09	28.47	15.66	1.82	13.59	3.13	0.25	0.8	7.5	
443.705	BKFL	89	578.31	0.000325	3.76	2.52	63.63	28.15	2.26	25.24	1.4	0.05	0.1	11.2	
365.317	BKFL	89	578.13	0.002413	2.76	1.7	29.43	18.41	1.6	17.31	3.02	0.24	0.7	10.8	
285.48	BKFL	89	577.96	0.002125	2.82	1.81	30.64	18.52	1.65	16.93	2.9	0.22	0.6	10.3	#7
218.437	BKFL	89	577.98	0.000357	3.14	2.21	63.62	30.88	2.06	28.78	1.38	0.05	0.1	14.0	#8
121.043	BKFL	89	577.31	0.016844	1.64	1.07	14.99	14.64	1.02	13.97	5.94	1.08	6.4	13.7	
73.051	BKFL	89	577.18	0.004004	2	1.36	26.19	20.1	1.3	19.27	3.4	0.33	1.1	14.8	

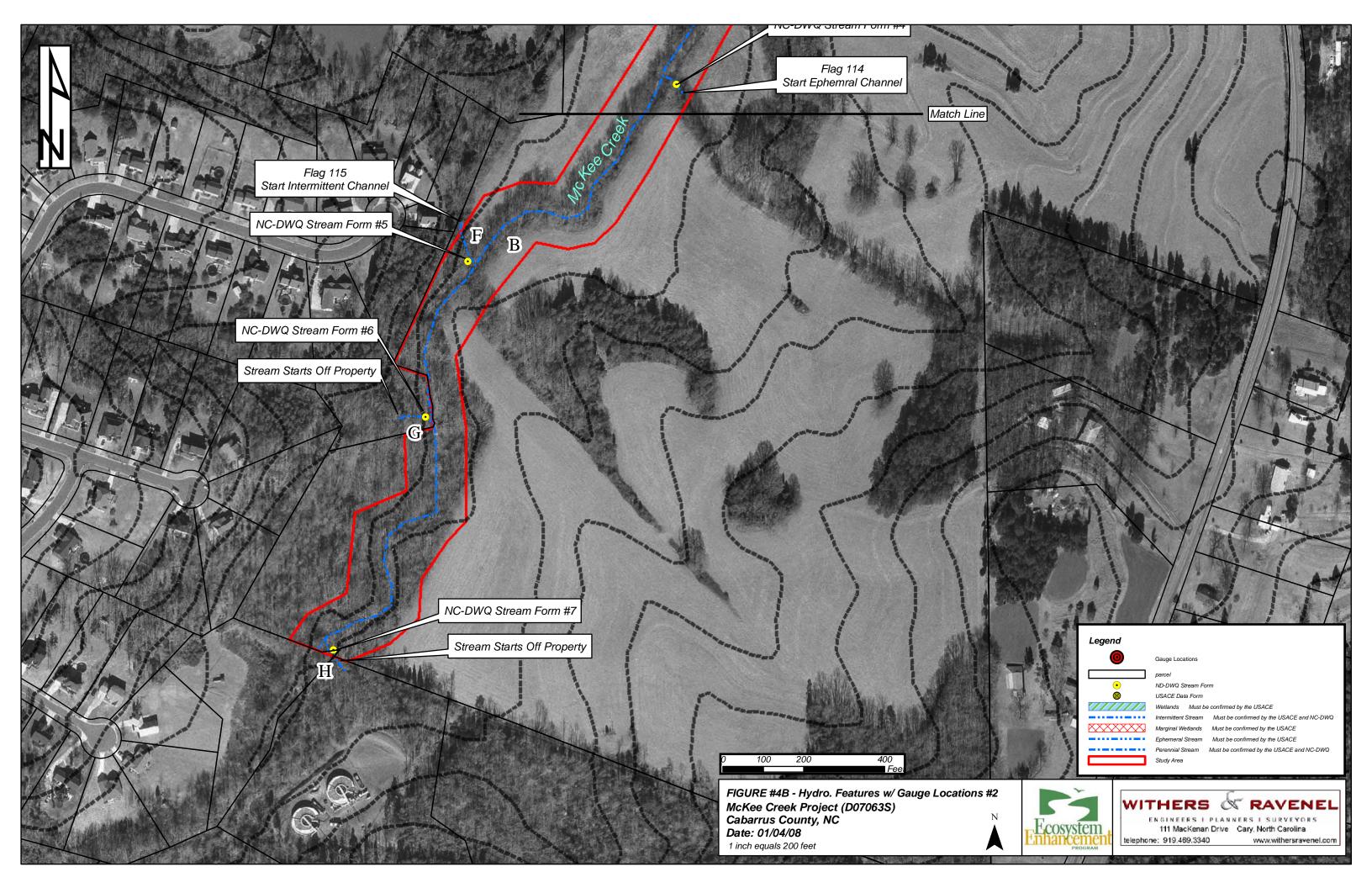
Table 10. Clear Creek (HEC-RAS Bankfull Model Output)

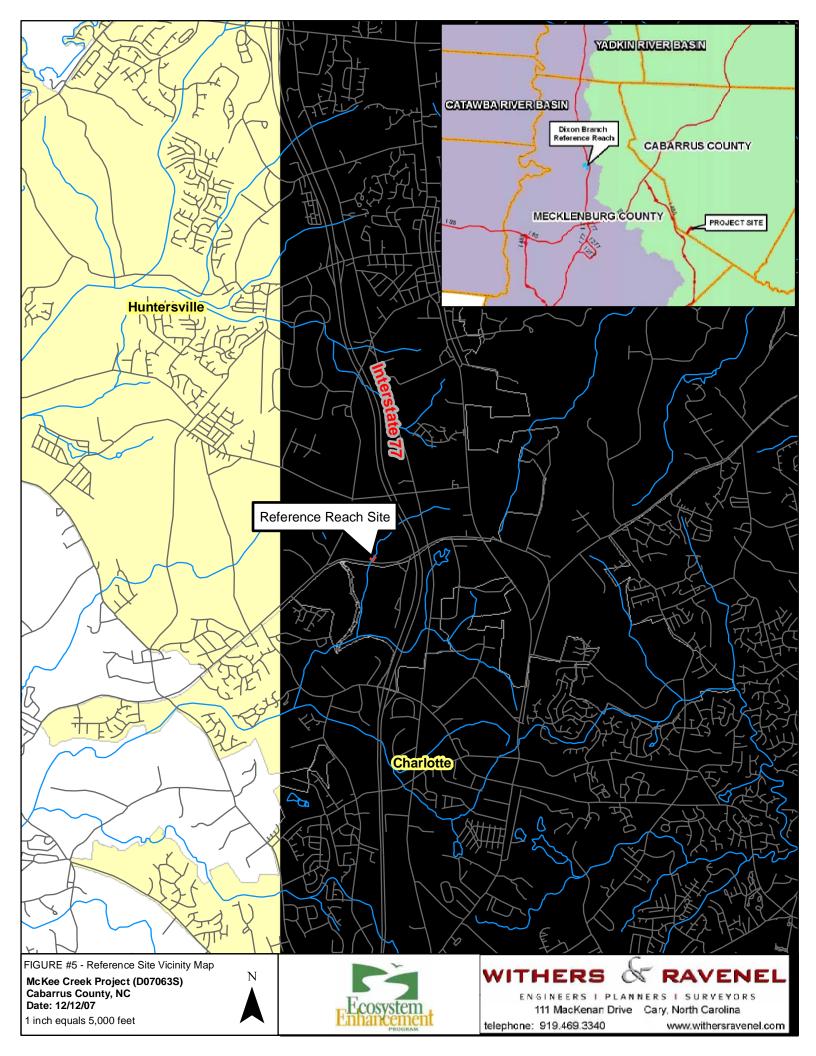

 Table 11 - Sediment Transport Competency Analysis Using HEC-RAS Bankfull Model (McKee Creek - Reach #1)

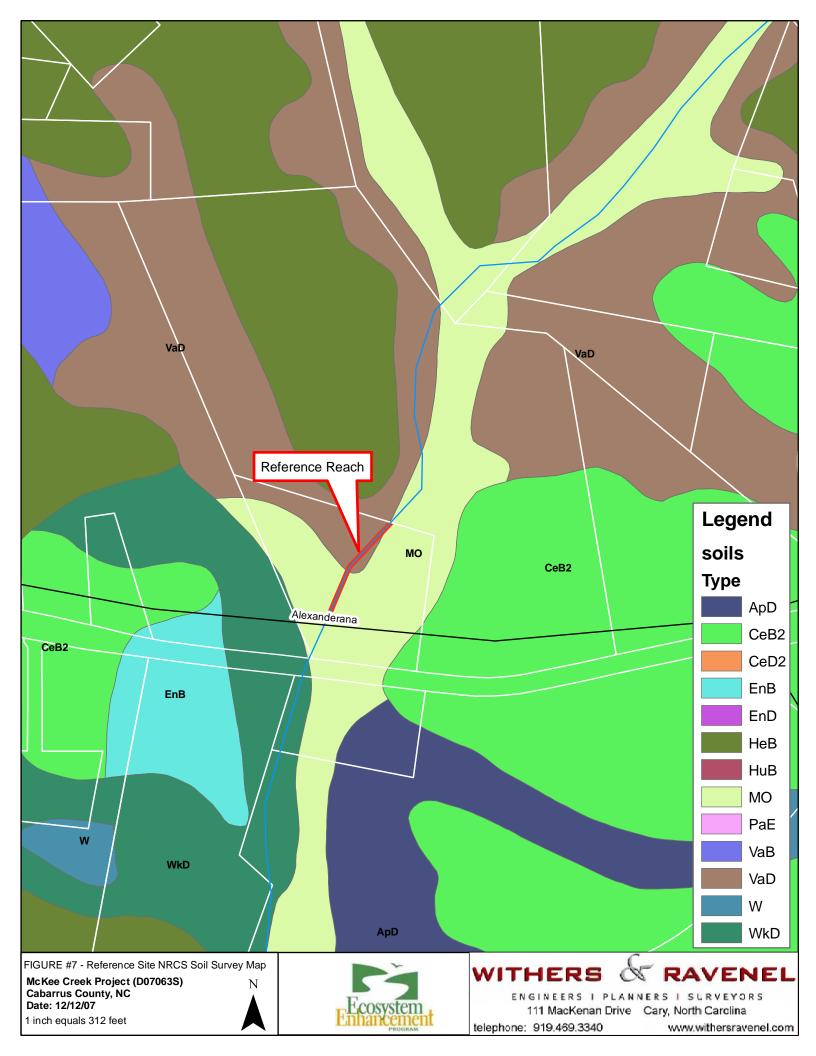

Shear Stress Analysis - Survey Data			Existing C	coss-sections			Proposed
Feature	XSC#1	XSC#2	XSC#5	XSC#6	XSC#7	XSC#8	Design XSC
Bankfull Cross Sectional Area, Abkf (sq ft)	88.1	89.08	88.9	81.5	98	76.39	80
Bankfull Width, Wbkf (ft)	26.1	24.6	24.0	33.4	65.7	45.1	31.0
Bankfull Mean Depth, Dbkf (ft)	3.4	3.6	3.7	2.4	1.5	1.7	2.6
Wetted Perimeter, WP=W+2D (ft)	29.0	28.2	27.7	34.9	67.5	46.8	32.5
Hydraulic Radius, R=Abkf/WP (ft)	3.04	3.16	3.21	2.34	1.45	1.63	2.46
Average Channel Slope, Se (ft/ft)	0.00290	0.00290	0.00290	0.00290	0.00290	0.00290	0.00320
Boundary Shear Stress, τ (lb/sq ft)	0.61	0.66	0.67	0.44	0.27	0.31	0.52
Median Diameter of Pavement, D ₅₀ (mm)	57	57	57	57	57	57	57
Median Diameter of Sub-pavement, D^{+}_{50} (mm)	24	24	24	24	24	24	24
Critical Dimensionless Shear Stress, τ_{ci}	0.0392	0.0392	0.0392	0.0392	0.0392	0.0392	0.0392
Largest Particle from Sub-Pavement, D_i (mm)	45	45	45	45	45	45	45
Largest Particle from Sub-Pavement, D _i (ft)	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Required Mean Bankfull Depth, Dr (ft)	3.3	3.3	3.3	3.3	3.3	3.3	3.0
Required Mean Bankfull Slope, Sr (ft/ft)	0.0028	0.0026	0.0026	0.0039	0.0064	0.0056	0.0037

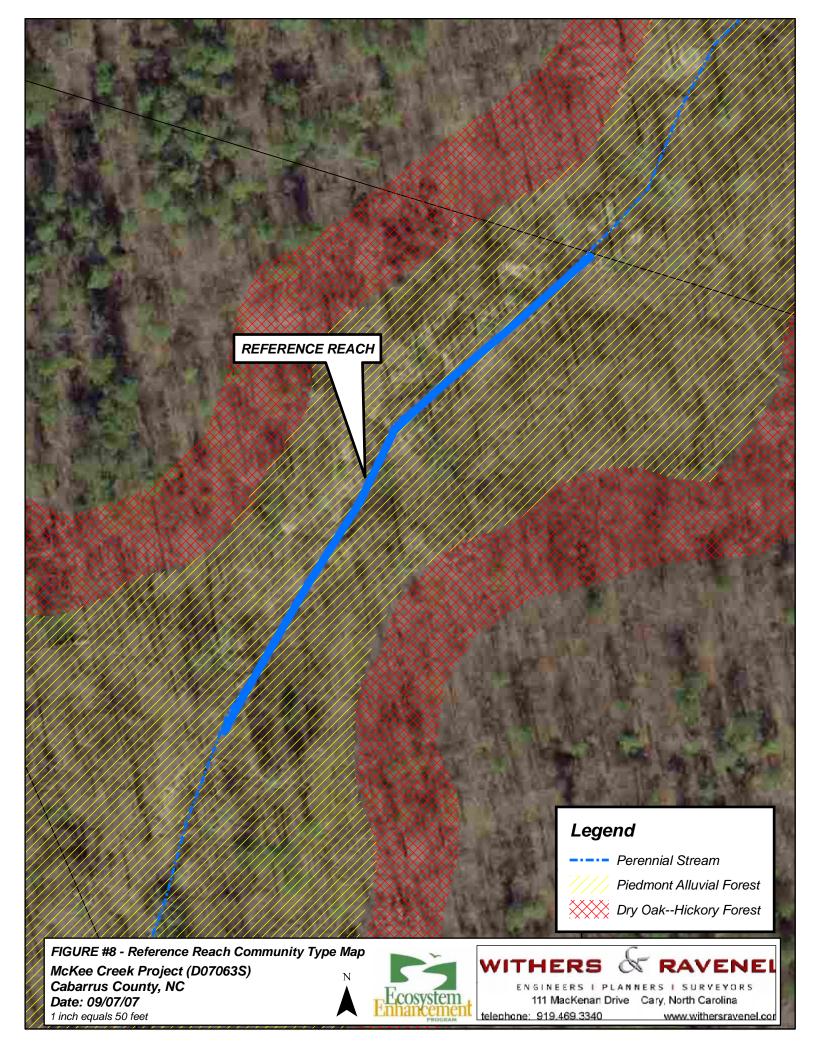

Shear Stress Analysis - Survey Data		Existing Cr	oss-sections		Proposed
Feature	XSC#9	XSC#11	Check (RS 1287.2)	Check (RS 1102.6)	Design XSC
Bankfull Cross Sectional Area, Abkf (sq ft)	67.96	86.7	172.06	99.4	85
Bankfull Width, Wbkf (ft)	24.59	29.81	60.1	30.8	31.9
Bankfull Mean Depth, Dbkf (ft)	2.8	2.9	2.9	3.2	2.7
Wetted Perimeter, WP=W+2D (ft)	27.5	32.6	63.9	37.2	27.4
Hydraulic Radius, R=Abkf/WP (ft)	2.47	2.66	2.69	2.67	3.10
Average Channel Slope, Se (ft/ft)	0.00180	0.00180	0.00180	0.00180	0.00230
Boundary Shear Stress, τ (lb/sq ft)	0.31	0.33	0.32	0.36	0.38
Median Diameter of Pavement, D_{50} (mm)	57	57	57	57	57
Median Diameter of Sub-pavement, D^{+}_{50} (mm)	24	24	24	24	24
Critical Dimensionless Shear Stress, τ_{ci}	0.0392	0.0392	0.0392	0.0392	0.0392
Largest Particle from Sub-Pavement, D_i (mm)	45	45	45	45	45
Largest Particle from Sub-Pavement, D_i (ft)	0.15	0.15	0.15	0.15	0.15
Required Mean Bankfull Depth, Dr (ft)	5.3	5.3	5.3	5.3	4.2
Required Mean Bankfull Slope, Sr (ft/ft)	0.0035	0.0033	0.0033	0.0030	0.0036


 Table 12 - Sediment Transport Competency Analysis Using HEC-RAS Bankfull Model (McKee Creek - Reach #2)


9.0 Figures







10.0 Exhibits

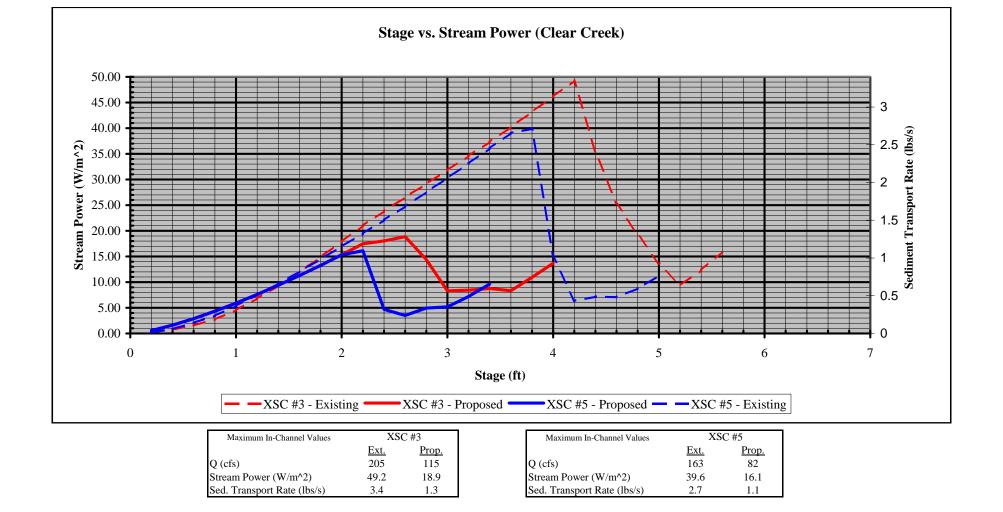
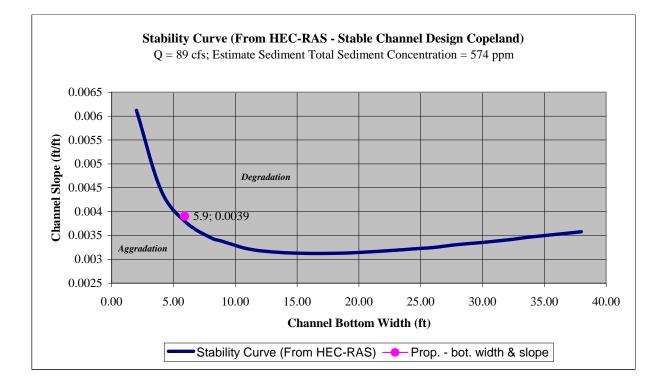



Exhibit 1 - Stage vs. Stream Power for Clear Creek (Existing compared to Design)

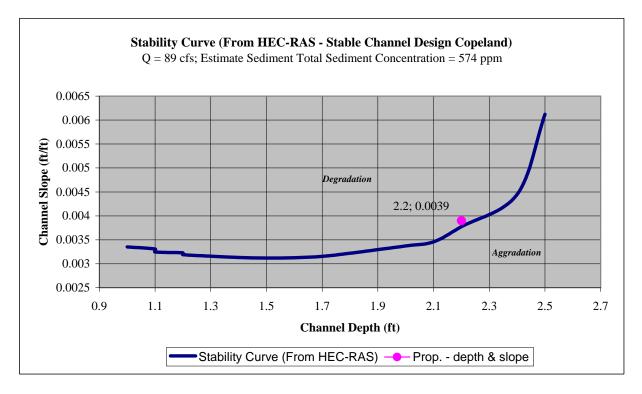


Exhibit 2 - Stability Curves From HEC-RAS (Clear Creek Design)

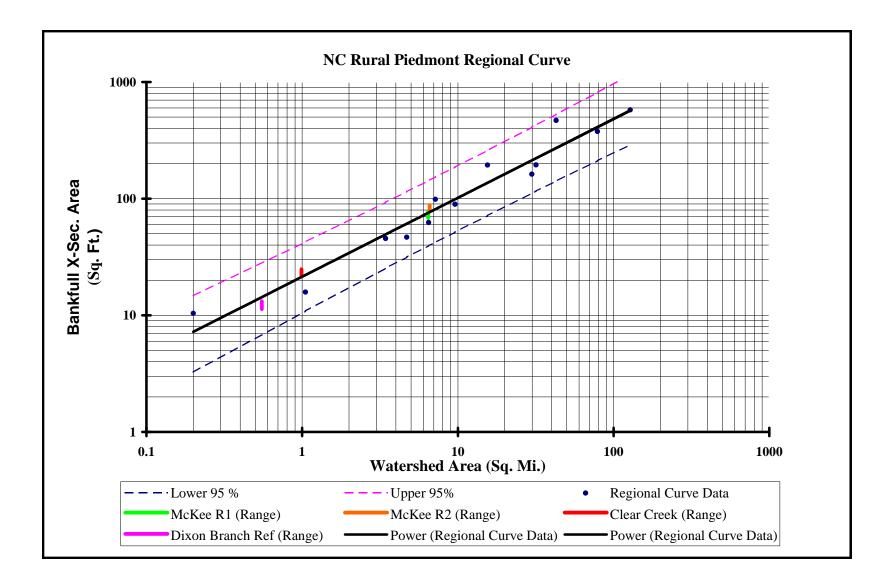
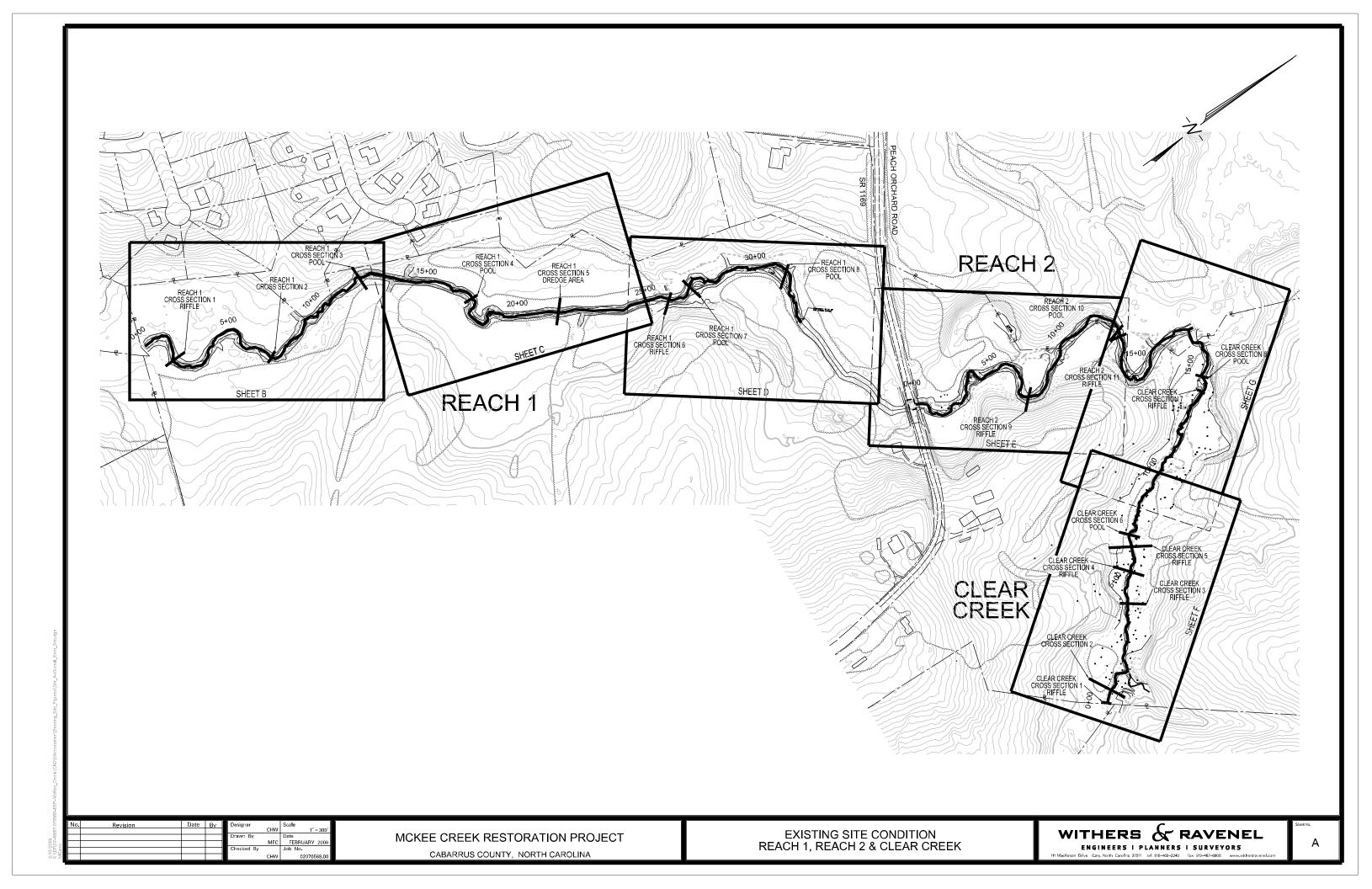
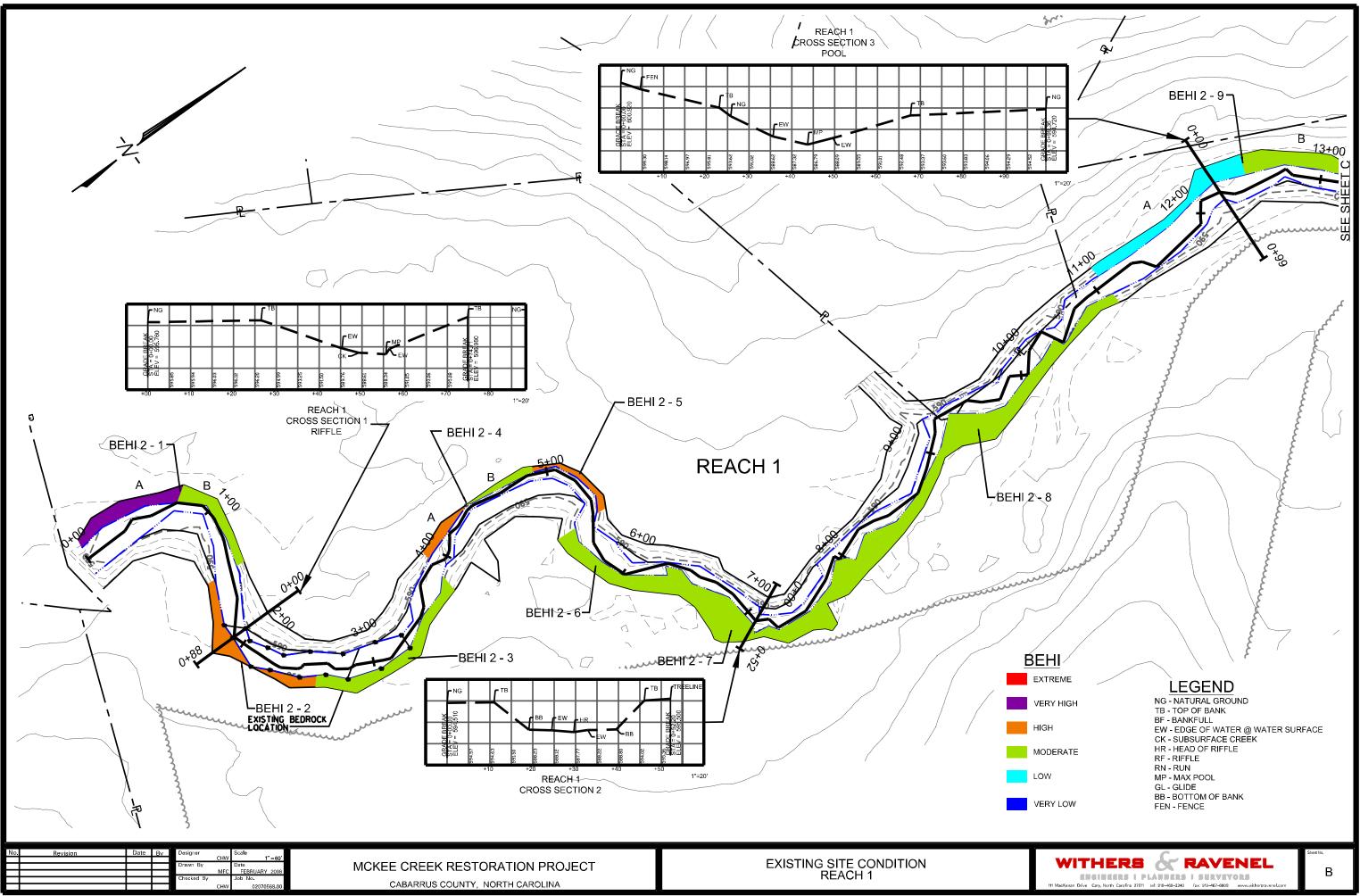
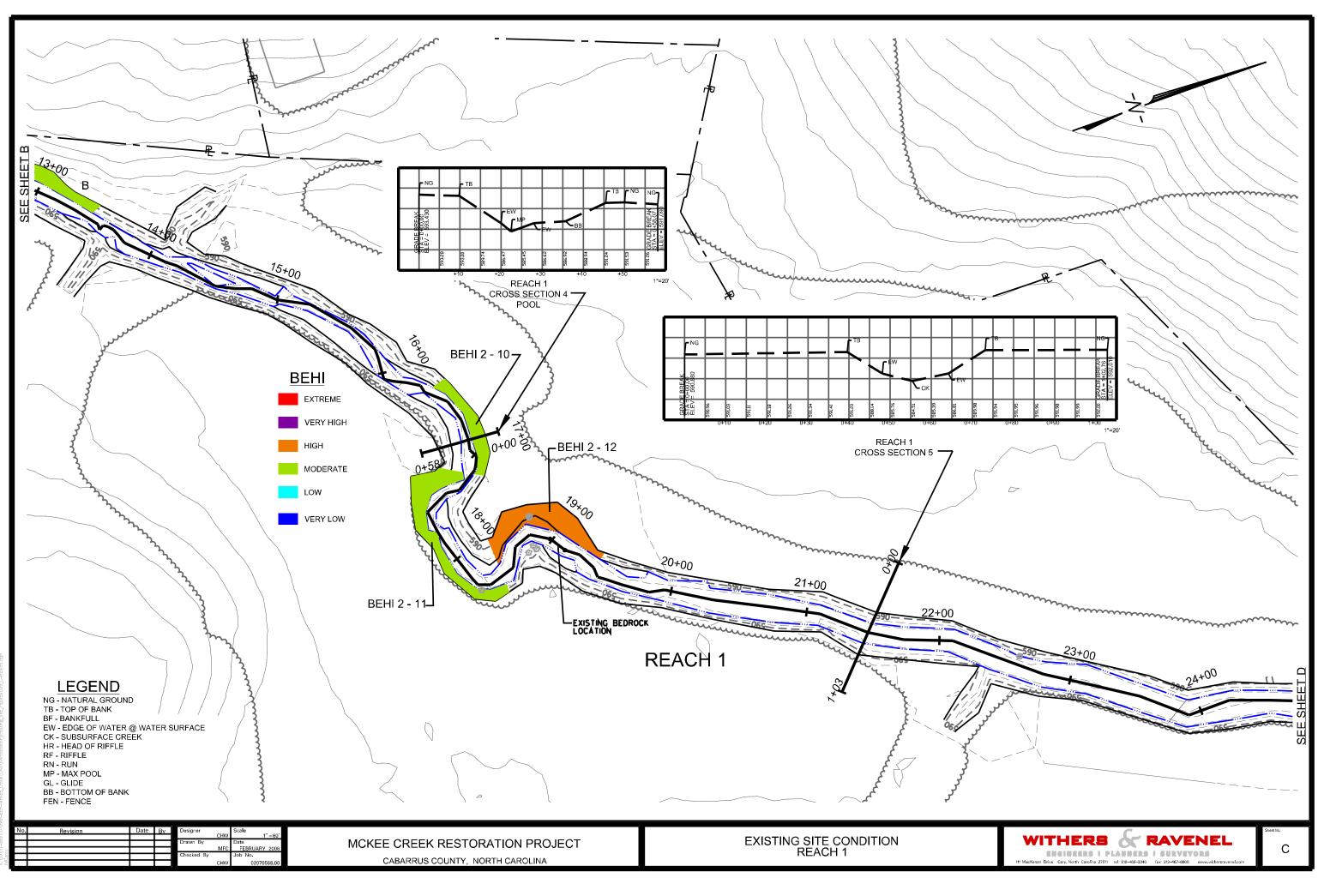
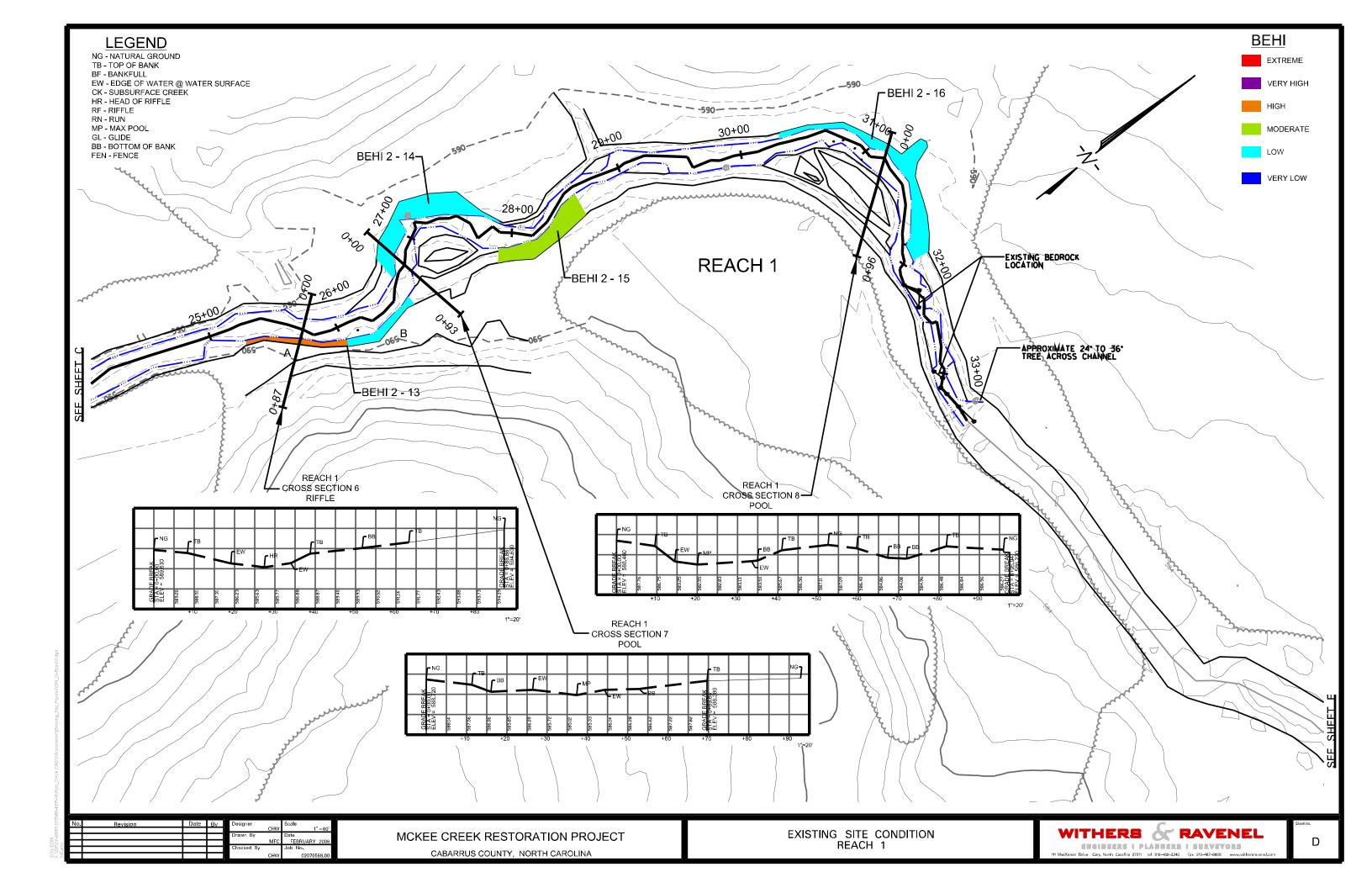
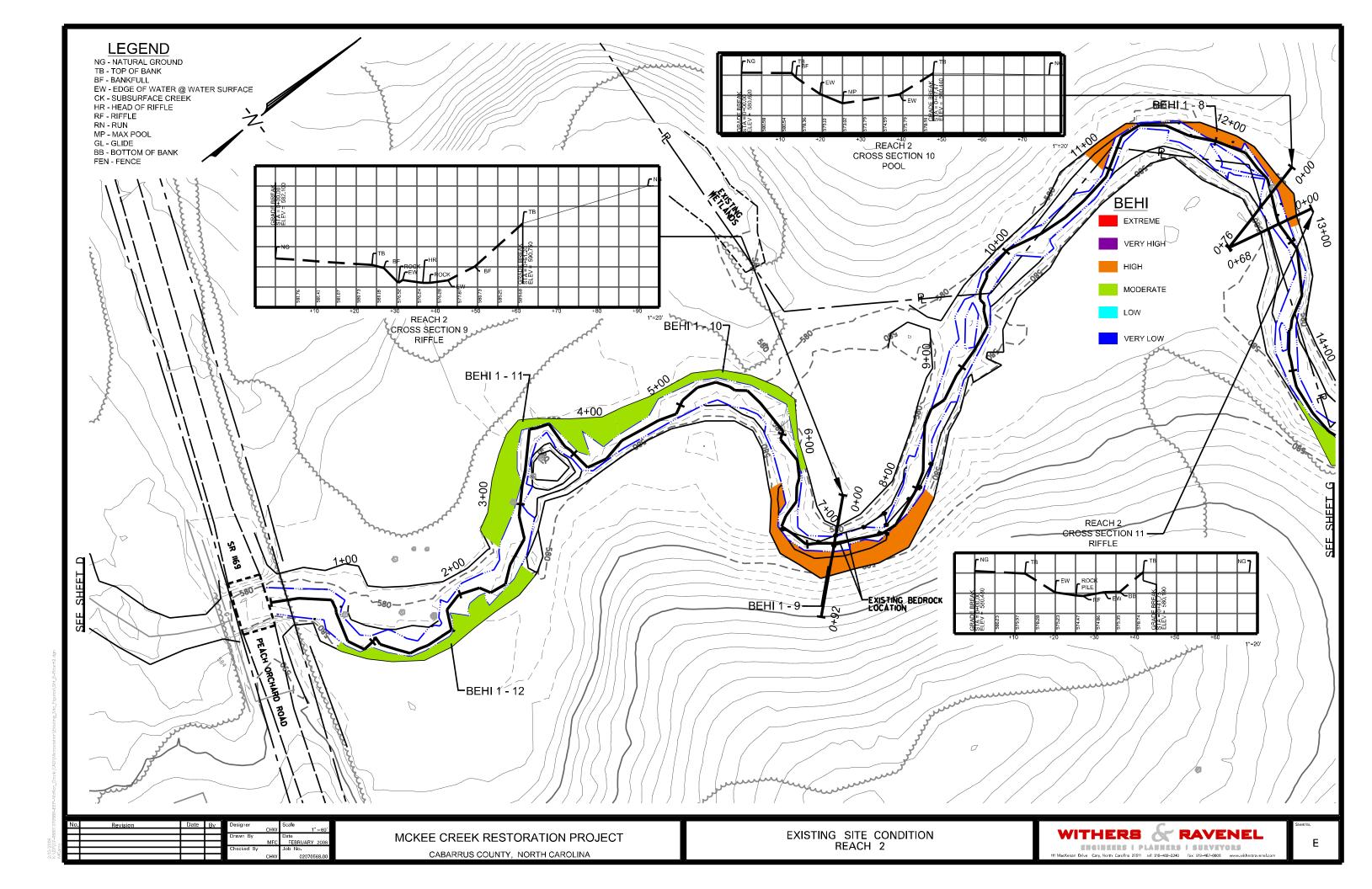
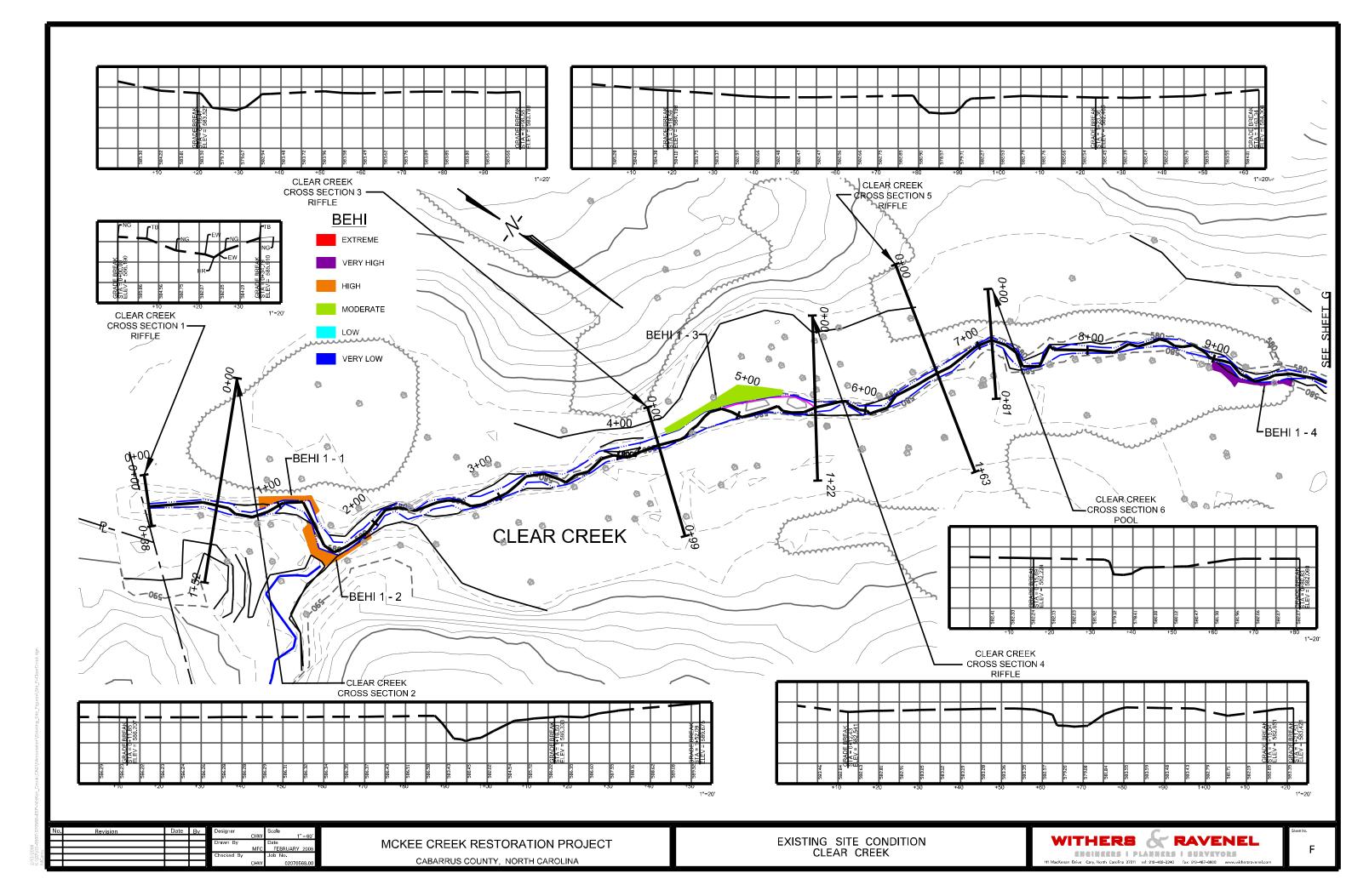




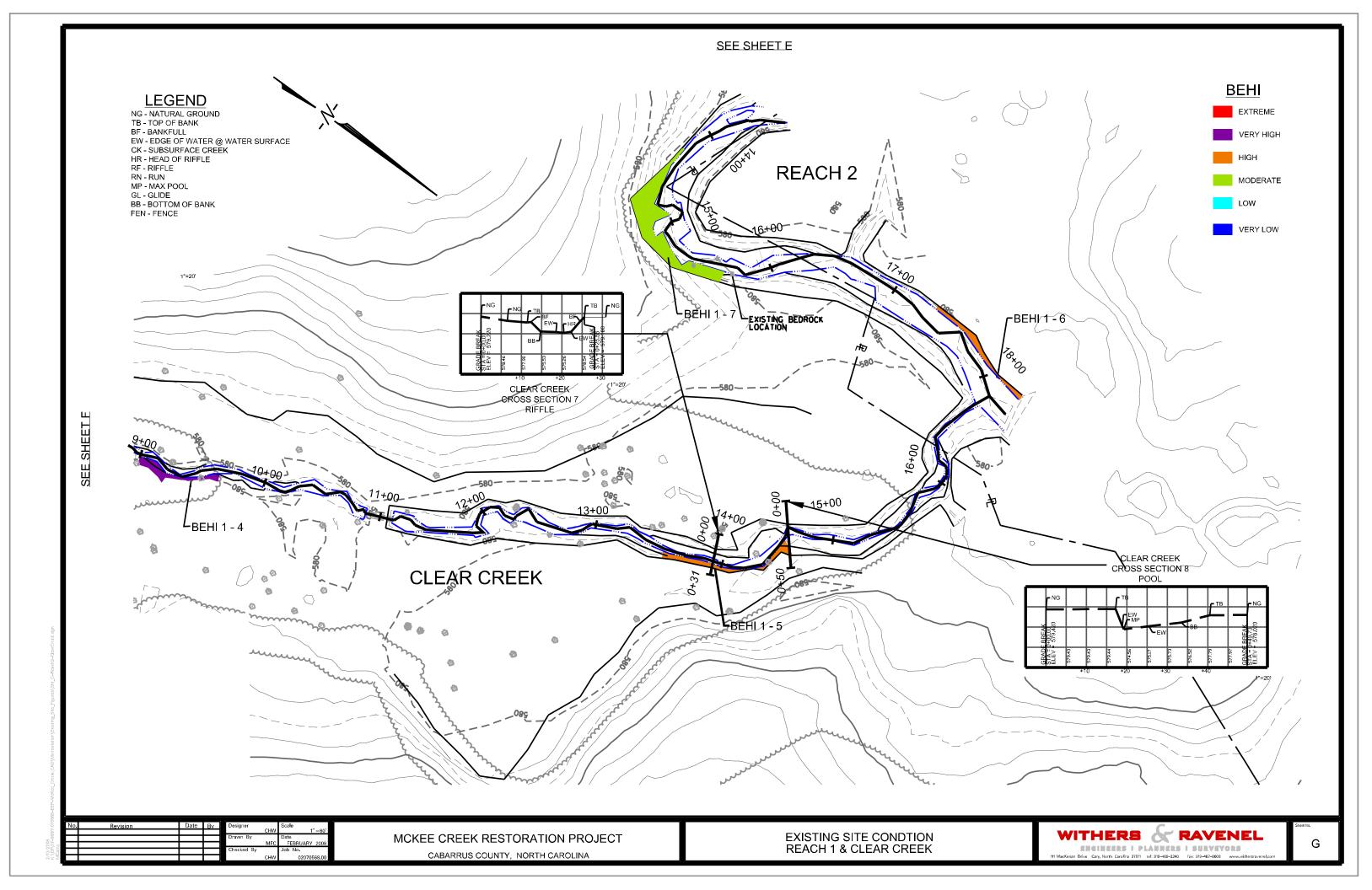
Exhibit 3 - NC Piedmont Rural Regional Curve, including project and reference reach surveyed data

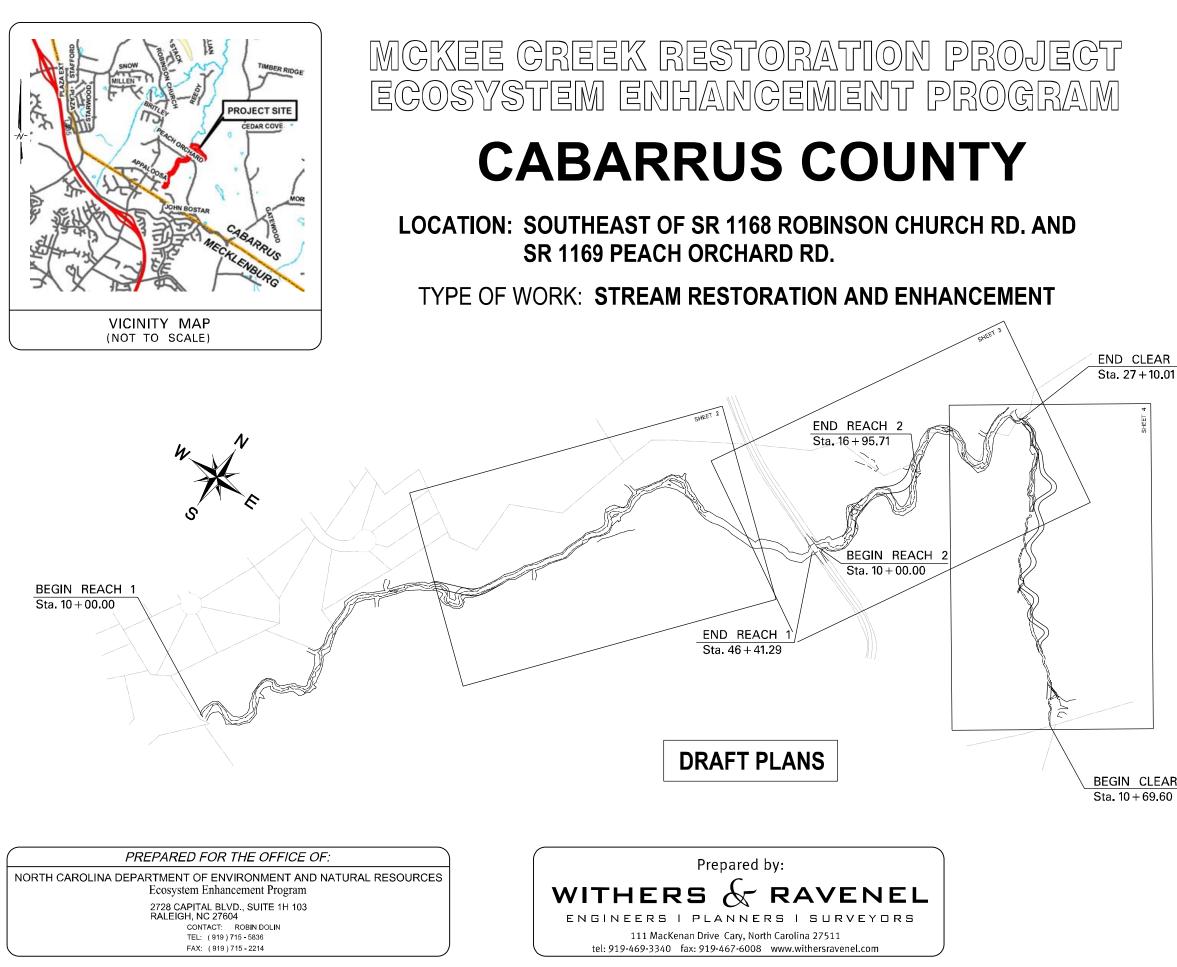

11.0 Designed Sheets

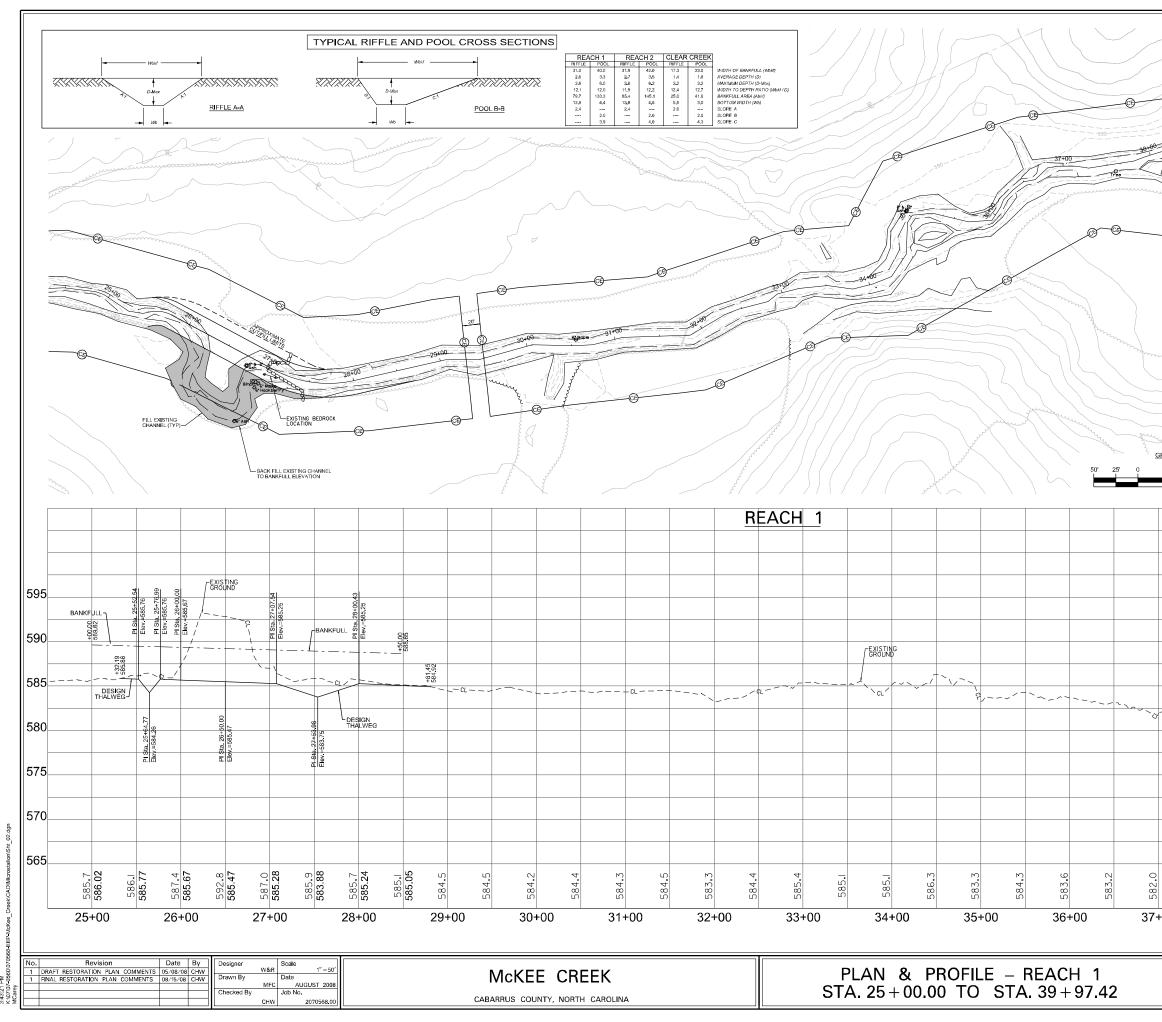



/2008 37/07–0560\070568–EEP–MoKoo_Crock\CAD\Microstatior\Existing_Sito_Figures\Sht_B


K:\07\07 MCarey

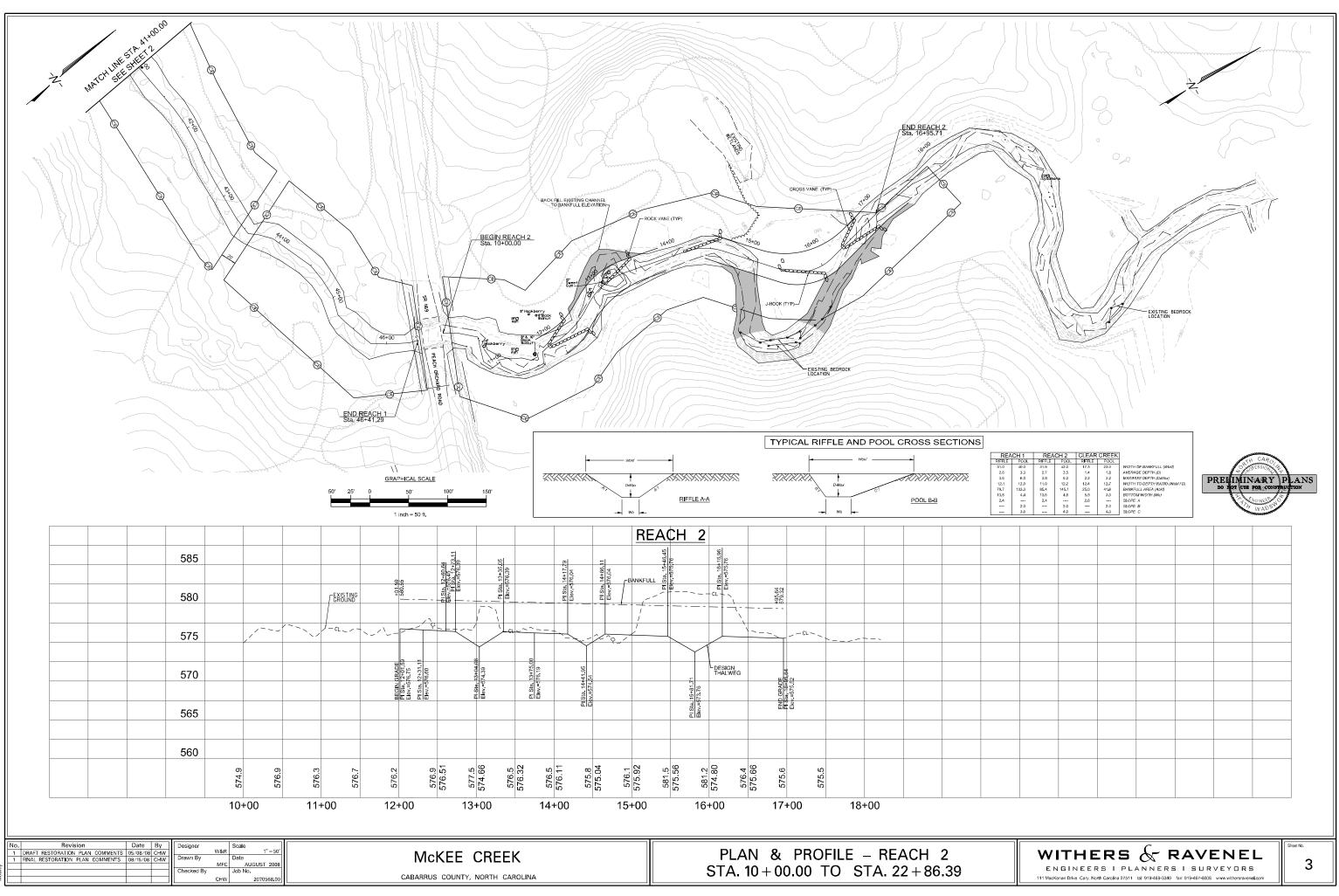


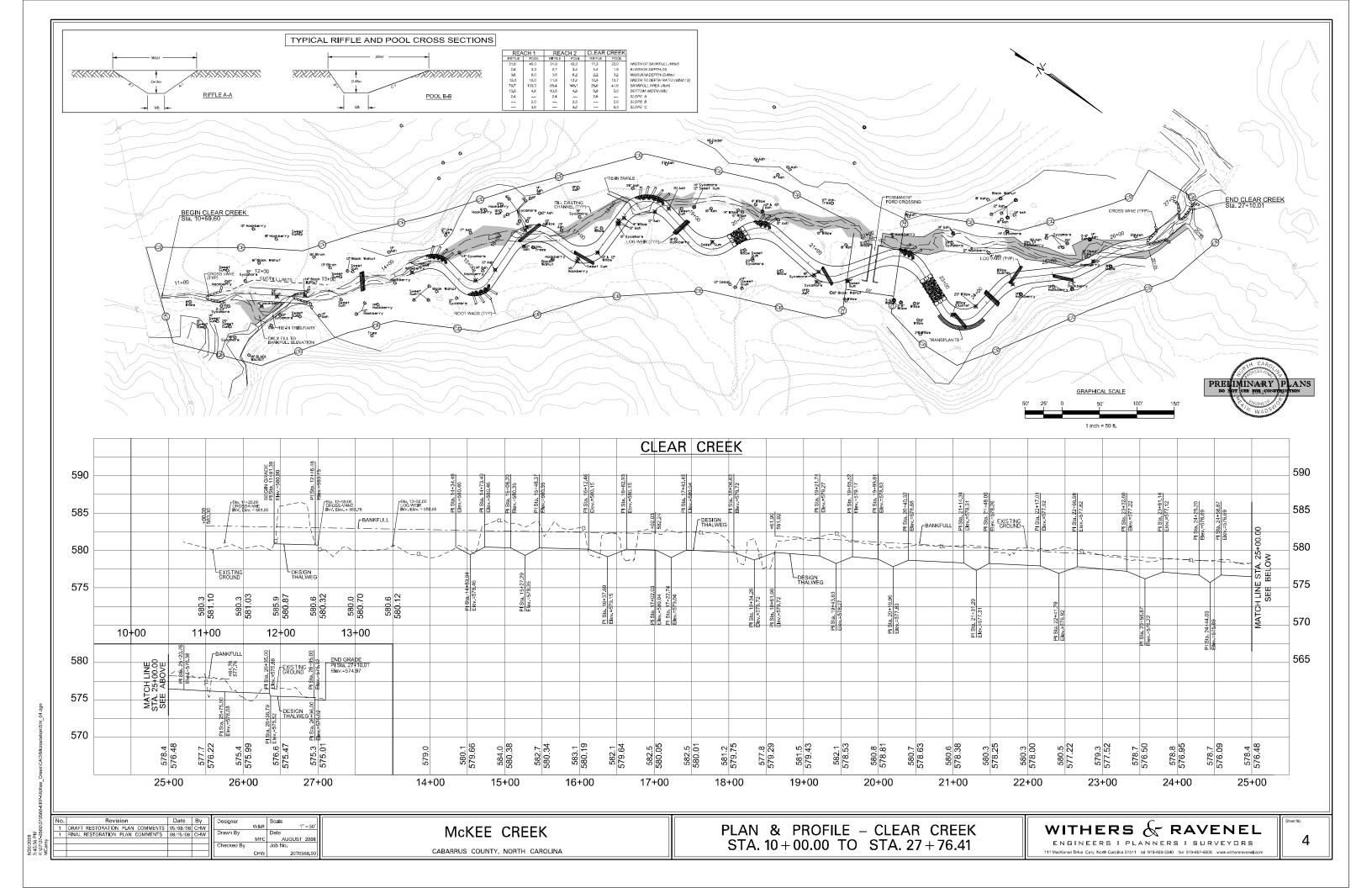

8002/21/2


11	NDEX OF SHEETS
<u>SHEET_NO.</u>	DESCRIPTION
_	TITLE SHEET
1	SYMBOLOGY-GENERAL NOTES- VEGETATION SELECTION
2-4	PLAN & PROFILE PLANSHEETS
5	CONSTRUCTION SEQUENCE
6–7	VEGETATION PLANTING PLAN
8–11	CONSTRUCTION DETAILS

END CLEAR CREEK

Project Reac	h Beakdow	n	
i loject keac	Deakuow	1	
	Begin sta	Endsta	a Total
McKee Creek - Reach 1			
Stream Enhancement (Level II)			
	10+00	25+00	1500
	29+00	46+40	1740
			3240
Stream Enhancement (Level I)	25+00	29+00	400
McKee Creek - Reach 2			
Stream Enhancement (Level I)			
	10+00	16+96	696
Clear Creek			
Stream Restoration			
	10+69	27+10	1641
Project	Totals		
Stream Restor	ation=	1641	feet
Stream Enhancement (Le	vel I)=	1096	feet
Stream Enhancement (Lev	/el II)=	3240	feet
,		5977	


BEGIN CLEAR CREEK



8/20/2008 3:43:21 PM K:\07\07-056

590	No. C	Jon					
			-EXISTING BEDROC	x		2	
MOVE EXISTING	TREE NINEL IN						
					2 2 2 CFOILESS	~ ~ ~ ~	
HICAL SCALE 50'	100'	150'		PRI	CLEIMINA Storess CLEIMINA Storess W		ANS ^{IN}
50'					ELEIMINSA SOT USE POR		
50'					ELEIMINSA SOT USE POR		595
50'					ELEIMINSA SOT USE POR		595 595 590 585
50'					ELEIMINSA SOT USE POR		595 595 590 585
50'					ELEIMINSA SOT USE POR		595 595 590 585

8/20/2008 3:44:45 PM K:\07\07-056

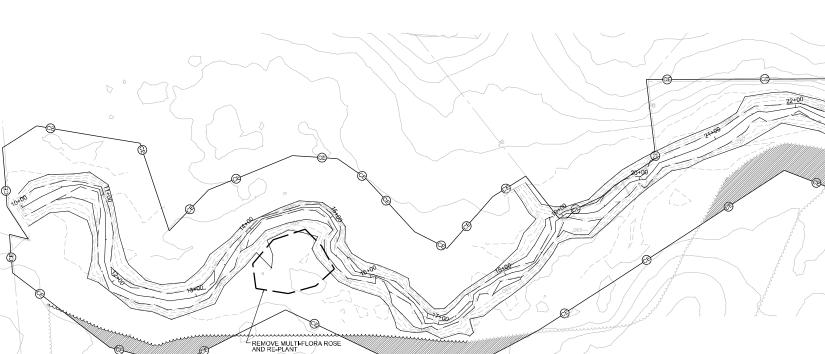
В	are Root Seedlings	
Scientific Name	Common Name	Tolerance
Betula nigra	River Birch	FACW
Carya aquatica	Water Hickory	OBL
Celtis laevigata	Sugarberry	FACW
Fraxinus pennsylvanica	Green Ash	FACW
Juglans nigra	Black Walnut	FAC
Liriodendron tulipifera	Tulip Poplar	FAC
Platanus occidentalis	Sycamore	FAC-
Quercus michauxii	Swamp Chestnut Oak	FACW-

In general, hardwoods will consist of bare root vegetation planted at a target density of 680 stems per acre, spaced on an 8' by 8' grid. Selected species shall be planted according to their wetness tolerance and the anticipated wetness of the planting areas. Bare roots shall be planted in the designated harked areas as shown on the plans, Non-hatched areas on the floodplain that are designated as invasive species removal areas will also require bare root plantings.

	Live Stakes	
Scientific Name	Common Name	Tolerance
Cephalanthus occidentalis	Buttonbush	OBL
Cornus amomum	Silky Dogwood	FACW +
Salix nigra	Black Willow	OBL
Sambucus canadensis	Elderberry	FACW-

Live stakes shall be installed on all the stream banks throughout the project area. Stakes shall be installed randomly with respect to species, 2' to 3' apart using triangular spacing along the outside of bends and 4' to 6' apart using triangular spacing along the banks of straight riffe sections (maximum of 20% Black Willow). Stakes shall be selectively placed on existing vegetated stream banks.

Stream Banks Permanent Seed	Mixture
-----------------------------	---------


Scientific Name	Common Name	% of Mixture	Seeding Density (lbs/ac)
Andropogon glomeratus	Bushy Beard Grass	20%	2
Bidens aristosa	Beggar Ticks	10%	2
Dichanthelium clandestinum	Deer Tongue	15%	3
Elymus virginicus	Virginia Wild Rye	25%	2
Juncus effusus	Soft Rush	15%	2
Panicum virgatum	Switch Grass	10%	3
Tripsacum dactyloides	Gamma Grass	5%	3

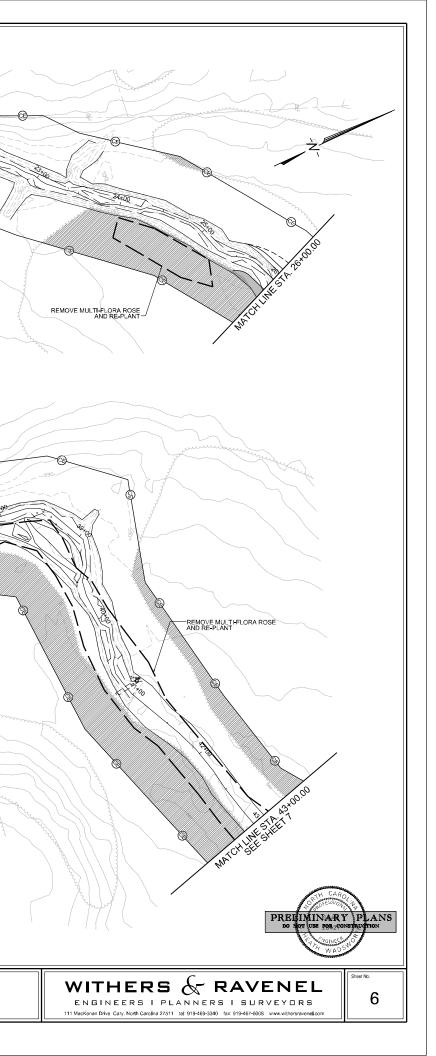
Flood Plain Permanent Seed Mixture

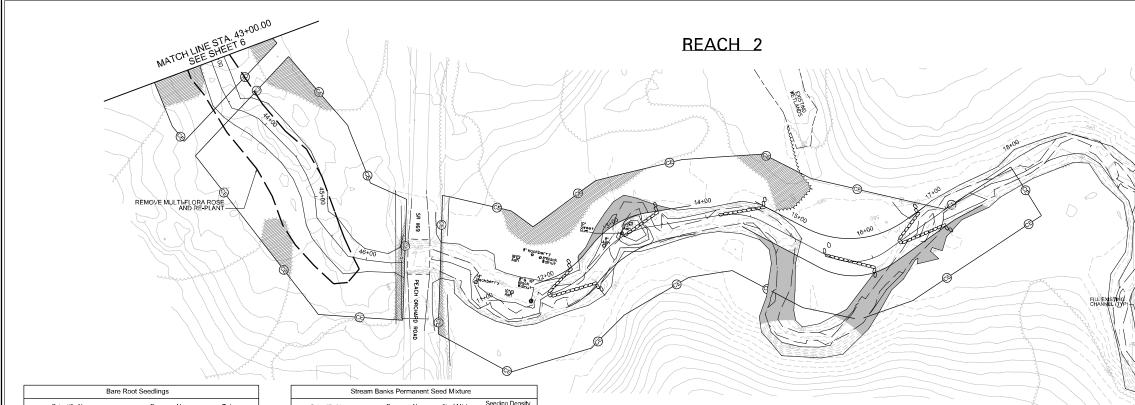
Scientific Name	Common Name	% of Mixture	Seeding Density (lbs/ac)
Andropogon gerardii	Big Blue Stem	15%	12-15
Bidens aristosa	Beggar Ticks	10%	12-15
Carex vulpinoidea	Fox Sedge	25%	12-15
Chamaecrista fasciulata	Partridge Pea	15%	12-15
Elymus virginicus	Virginia Wild Rye	15%	12-15
Schizachyrium scoparium	Little Blue Stem	20%	12-15

A permanent seed mixture of native grasses and forbs shall be applied to all disturbed areas of the site. Separate mixtures are provided for stream banks and for flood plain areas. The permanent seed mixture for stream banks shall be applied in order to provide rapid stabilization of constructed stream banks and steep slopes. The permanent seed mixture for floodplains shall be applied to all other disturbed areas, outside of existing tree lines, to provide rapid stabilization of constructed cover with a high biological habitat value.

FILL EXISTIN CHANNEL (T

BARE ROOTS AND FLOOD PLAIN PERMANENT SEED MIXTURE SHALL BE INSTALLED IN THE HATCHED AREAS. REFERENCE THE NOTES BELOW THE PLANT TABLES FOR FURTHER PLANTING INSTRUCTIONS.


		K:\07\07-0560\070568-EEP-McKee_Creek\CAD\Microstation\Sht_06.dgn						
		ğ						
		ĕ			Ν	lo.	L	
		00				1	T	D
8	N	9				lo. 1 1	Γ	FI
200	20	6	eV.				I	
8/20/2008	3:46:20 PM	6	MCarey				Ι	
8/8	ė	¥	Σ	l				
				-				


) .	Revision	Date	By	Designer		Scale		
	DRAFT RESTORATION PLAN COMMENTS	05/08/08	6 CHW		W&R	1" = 50'		
	FINAL RESTORATION PLAN COMMENTS	08/15/08	CHW	Drawn By		Date		
					MFC	AUGUST 2008		
				Checked By		Job No.		
					CHW	2070568.00	CABARRUS COUNTY, NORTH CAROLINA	
				-				

VEGETATION PLANTING PLAN REACH 1

GRAPHICAL SCALE

1 inch = 50 ft.

Scientific Name	Common Name	Tolerance
Betula nigra	River Birch	FACW
Carya aquatica	Water Hickory	OBL
Celtis laevigata	Sugarberry	FACW
Fraxinus pennsylvanica	Green Ash	FACW
Juglans nigra	Black Walnut	FAC
Liriodendron tulipifera	Tulip Poplar	FAC
Platanus occidentalis	Sycamore	FAC-
Quercus michauxii	Swamp Chestnut Oak	FACW-

Cuercus micratusi — Swainp Chesnol Cak — ProcVe — In general, hardwoads will consist of bare root vegetation planted at a target density of 680 stems per acre, spaced on an 8' by 8' grid. Selected species shall be planted according to their wetness tolerance and the anticipated wetness of the planting areas. Bare roots shall be planted in the designated harched areas as shown on the plans, Non-hatched areas on the floodplain that are designated as invasive species removal areas will also require bare root plantings.

Live Stakes	
Common Name	Tolerance
Buttonbush	OBL
Silky Dogwood	FACW +
Black Willow	OBL
Elderberry	FACW-
	Common Name Buttonbush Silky Dogwood Black Willow

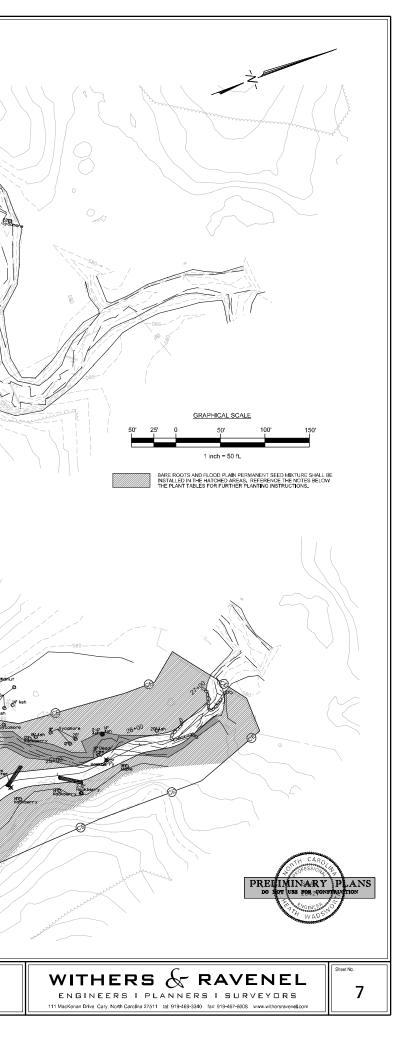
Live stakes shall be installed on all the stream banks throughout the project area. Stakes shall be installed randomly with respect to species, 2' to 3' apart using triangular spacing along the outside of bends and 4' to 6' apart using triangular spacing along the banks of straight riffle sections (maximum of 20% Black Willow). Stakes shall be selectively placed on existing vegetated stream banks.

B BLAC

Stream Banks Permanent Seed Mixture					
Scientific Name	Common Name	% of Mixture	Seeding Density (lbs/ac)		
Andropogon glomeratus	Bushy Beard Grass	20%	2		
Bidens aristosa	Beggar Ticks	10%	2		
Dichanthelium clandestinum	Deer Tongue	15%	3		
Elymus virginicus	Virginia Wild Rye	25%	2		
Juncus effusus	Soft Rush	15%	2		
Panicum virgatum	Switch Grass	10%	3		
Tripsacum dactyloides	Gamma Grass	5%	3		

Flood Plain Permanent Seed Mixture					
Scientific Name	Common Name	% of Mixture	Seeding Density (lbs/ac)		
Andropogon gerardii	Big Blue Stem	15%	12-15		
Bidens aristosa	Beggar Ticks	10%	12-15		
Carex vulpinoidea	Fox Sedge	25%	12-15		
Chamaecrista fasciulata	Partridge Pea	15%	12-15		
Elymus virginicus	Virginia Wild Rye	15%	12-15		
Schizachvrium scoparium	Little Blue Stem	20%	12-15		

Little Bild State State


CLEAR CREEK

Dullis.

I4€3 Hockberry

1 DRAFT RESTORATION PLAN COMMENTS 05/08/08 CHW 05/08/08 04/05/08 04/05/08 VEGETA' 1 FINAL RESTORATION PLAN COMMENTS 08/15/08 CHW Date Dete VEGETA'					L
	1	DRAFT RESTORATION PLAN COMMENTS 05/08/08 CHW	W&R 1"=50' Drawn By Date	McKEE CREEK	VEGETA REACH

EGETATION PLANTING PLAN REACH 2 & CLEAR CREEK

12.0 Appendices

Appendix 1 – Project Site Photographs

Photograph 1: View of feature A (Clear Creek) just upstream of its confluence with feature B (see Figure 4a and 4b).

Photograph 2: View of the floodplain of feature A (Clear Creek) (see Figure 4a and 4b).

Photograph 3: View of the pasture land adjacent to feature A (see Figure 4a and 4b).

Photograph 4: View of the section of stream channel that was evaluated in stream form #1 (see Figure 4a and 4b).


Photograph 5: View of the forested floodplain at the confluence of feature A (Clear Creek) and feature B (McKee Creek) (see Figure 4a and 4b).

Photograph 6: View of feature D as described by stream form #2 (see Figure 4a and 4b).

Photograph 7: View of the wetland just north of Peach Orchard Rd along feature B demarcated by wetland flags 107A&B through 110A & 112B (see Figure 4a and 4b).

Photograph 8: View of feature B (McKee Creek) south of Peach Orchard Rd (see Figure 4a and 4b).

Photograph 9: View of feature E just below flag #113 (start channel) (see Figure 4a and 4b).

Photograph 10: View of the ephemeral channel as described by stream form #4 (see Figure 4a and 4b).

Photograph 11: Clear Creek Cross-Section 1

Photograph 12: Clear Creek Cross-Section 2

Photograph 13: Clear Creek Cross-Section 3

Photograph 14: Clear Creek Cross-Section 4

Photograph 15: Clear Creek Cross-Section 5

Photograph 16: Clear Creek Cross-Section 6

Photograph 17: Clear Creek Cross-Section 7

Photograph 18: Clear Creek Cross-Section 8

Photograph 19: McKee Creek Cross-Section 1

Photograph 20: McKee Creek Cross-Section 2

Photograph 21: McKee Creek Cross-Section 3

Photograph 22: McKee Creek Cross-Section 4

Photograph 23: McKee Creek Cross-Section 5

Photograph 24: McKee Creek Cross-Section 6

Photograph 25: McKee Creek Cross-Section 7

Photograph 26: McKee Creek Cross-Section 8

Photograph 27: McKee Creek Cross-Section 9

Photograph 28: McKee Creek Cross-Section 10

Photograph 29: McKee Creek Cross-Section 11

Photograph 30: McKee Creek Bent to be Removed Vicinity of Cross-Section 4

Photograph 31: McKee Creek Log on Reach 1 at End of topographic mapping upstream from bridge on Peach Orchard Road

Photograph 32: McKee Creek Stagnate Water Area on Reach 1

Appendix 2 – Project Site USACE Routine Wetlands Determination Data Forms

DATA FORM #1 ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual)

Project / Site: W&R Project # -02070568 Applicant / Owner: NC-EEP Investigator: Luke Tuschak: Todd Preuninger			Date: 7-17-07 County: Cabarrus State: NC
Do normal circumstances exist on the site? Is the site significantly disturbed (Atypical situa Is the area a potential problem area? (explain on reverse if needed)	Yes ntion)? Yes Yes	N0 N0 N0 N0 N0	Community ID <u>Cow</u> <u>Pasture</u> Transect ID: <u></u> PlotID <u>:</u>

VEGETATION

Dominant Plant Species	<u>Stratum</u>	Indicator	Dominant Plant Species	<u>Stratum</u> In	ndicator
 Impatiens capensis Eulalia viminea Verbesina alternifolia Salix nigra Fraxinus pennsylvanica Gelditrsia tricanthos Celtis laevigata Juniperus virgininia 	Herb Herb Herb Tree Tree Tree Tree Tree	FACW FAC FAC OBL FACW FAC- FACW FACU-	9 10 11 12 13 13 14 15 16		
Percent of Dominant Specie	es that are	OBL, FACW	, or FAC excluding FAC-). 7	<u>5 %</u>	
Remarks: Hydrophytic Vegetation Present					

HYDROLOGY

Recorded Data (Describe In Remarks): Stream, Lake, or Tide Gauge	Wetland Hydrology Indicators
Aerial Photographs	Primary Indicators:
Other	Inundated
	Saturated in Upper 12"
☑ No Recorded Data Available	Water Marks
—	Drift Lines
Field Observations:	Sediment Deposits
	Drainage Patterns in Wetlands
Depth of Surface Water:(in.)	
	Secondary Indicators:
Depth to Free Water in Pit: (in.)	Oxidized Roots Channels in Upper 12"
	Water-Stained Leaves
Depth to Saturated Soil:(in.)	Local Soil Survey Data
	FAC-Neutral Test
	Other (Explain in Remarks)
	<u> </u>
Remarks: Hydrology Indicators Absent	

SOILS

Map Unit Name (Series and Phase): Chewalca sandy Loam Drainage Class: Somewhat Poorly Drained								
Taxonomy (Subgroup): Thermic Fluvaquentic Dystrochrepts Confirm Mapped Type? Yes No								
Profile Description: Depth (inches) Horizon 0-10"	Matrix Colors (Munsell Moist) 10YR 4/4 10YR 5/3	Mottle Colors (Munsell Moist)	Mottle <u>Abundance/Contrast</u>	Texture, Concretions, <u>Structure, etc.</u> <u>Clay Loam</u> <u>Clay Loam</u>				
Hydric Soil Indicators: Histosol Concretions Histic Epipedon High Organic Content in Surface Layer in Sandy Soils Sulfidic Odor Organic Streaking in Sandy Soils Aquic Moisture Regime Listed On Local Hydric Soils List Reducing Conditions Listed on National Hydric Soils List Gleyed or Low-Chroma Colors Other (Explain in Remarks)								
Remarks: Hydric Soils Absent WETLAND DETERMINATION								
Hydrophytic Vegeta Wetland Hydrology Hydric Soils Preser	ation Present?	Yes	Is the Sampling F Within a Wetland					
Remarks:								

DATA FORM #2 ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual)

Project / Site: W&R Project # -02070568 Applicant / Owner: NC-EEP Investigator: Luke Tuschak: Todd Preuninger			Date: 7-17-07 County: Cabarrus State: NC
Do normal circumstances exist on the site? Is the site significantly disturbed (Atypical situ Is the area a potential problem area? (explain on reverse if needed)	Yes Jation)? Yes Yes	N	Community ID: <u>Vernal</u> <u>Pool</u> Transect ID: PlotID <u>:_</u>

VEGETATION

Dominant Plant Species	<u>Stratum</u>	Indicator	Dominant Plant Species	Stratum Indicator
1. Betula nigra 2. Sagittaria latifolia 3. Carex Sp. 4. Salix nigra 5. Fraxinus pennsylvanica 6. 7. 8.	<u>Herb</u> <u>Tree</u> <u>Tree</u>	<u>FACW</u> <u>OBL</u> <u>FACW</u> <u>FACW</u>	9 10 11 12 13 13 14 15 16	
Percent of Dominant Specie	es that are	OBL, FACW	, or FAC excluding FAC-). <u>1</u>	00 %
Remarks: Hydrophytic Vegetation Present				

HYDROLOGY

nds
Upper 12"

SOILS

Map Unit Name (Series and Phase): Chewalca sandy Loam Drainage Class: Somewhat Poorly Drained								
Taxonomy (Subgroup): <u>Thermic Fluvaquentic Dystrochrepts</u> Confirm Mapped Type? Yes No								
Profile Description: Depth (inches) Horizon 0-5"		Mottle Colors (Munsell Moist)	Mottle <u>Abundance/Contrast</u>	Clay Loam 50% Clay Loam 50%				
Hydric Soil Indicators: Histosol Concretions Histic Epipedon High Organic Content in Surface Layer in Sandy Soils Sulfidic Odor Organic Streaking in Sandy Soils Aquic Moisture Regime Listed On Local Hydric Soils List Reducing Conditions Listed on National Hydric Soils List Gleyed or Low-Chroma Colors Other (Explain in Remarks)								
Remarks: Hydric Soils Present								
r	WETLAND DETERMINATION							
Hydrophytic Vegetation Present? Yes ⋈ No □ Is the Sampling Point Wetland Hydrology Present? Yes ⋈ No □ Within a Wetland? Yes ⋈ No □ Hydric Soils Present? Yes ⋈ No □ No □ Within a Wetland? Yes ⋈ No □								
Remarks:								

DATA FORM #3 ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual)

Project / Site: W&R Project # -02070568 Applicant / Owner: NC-EEP Investigator: Luke Tuschak: Todd Preuninger			Date: 7-17-07 County: Cabarrus State: NC
Do normal circumstances exist on the site? Is the site significantly disturbed (Atypical situ Is the area a potential problem area? (explain on reverse if needed)	Yes Jation)? Yes Yes	N	Community ID: <u>Vernal</u> <u>Pool</u> Transect ID: PlotID <u>:_</u>

VEGETATION

Dominant Plant Species	<u>Stratum</u>	Indicator	Dominant Plant Species	Stratum India	<u>cator</u>
1. Quercus alba 2. Liriodendron tulipifera 3. Acer rubrum 4. Fagus grandifolia 5. Carya ovalis 6. 7. 8.	<u>Tree</u> <u>Tree</u>	<u>FACU</u> <u>FAC</u> <u>FAC</u> <u>NI</u> <u>FACU</u>	9 10 11 12 13 13 14 15 16		-
Percent of Dominant Specie	es that are	OBL, FACW	, or FAC excluding FAC-). 4) %	
Remarks: Hydrophytic Vegetation Absent					

HYDROLOGY

Recorded Data (Describe In Remarks): Stream, Lake, or Tide Gauge	Wetland Hydrology Indicators
Aerial Photographs	Primary Indicators:
Other	Inundated
—	Saturated in Upper 12"
No Recorded Data Available	Water Marks
-	Drift Lines
Field Observations:	Sediment Deposits
	Drainage Patterns in Wetlands
Depth of Surface Water:(in.)	
•	Secondary Indicators:
Depth to Free Water in Pit: (in.)	Oxidized Roots Channels in Upper 12"
	Water-Stained Leaves
Depth to Saturated Soil:(in.)	Local Soil Survey Data
	FAC-Neutral Test
	Other (Explain in Remarks)
Remarks: Hydrology Indicators Absent	

SOILS

Map Unit Name (Series and Phase): Enon Sandy Loam Drainage Class: Well Drained							
Taxonomy (Subgroup): Thermic Ultic Hapludalfs Confirm Mapped Type? Yes No							
Profile Description: Depth (inches) Horizon 0-12"	Matrix Colors (Munsell Moist) 10YR 5/6	Mottle Colors (Munsell Moist)	Mottle <u>Abundance/Contrast</u>	Texture, Concretions, Structure, etc. Loam			
Hydric Soil Indicators: Concretions Histosol Concretions Histic Epipedon High Organic Content in Surface Layer in Sandy Soils Sulfidic Odor Organic Streaking in Sandy Soils Aquic Moisture Regime Listed On Local Hydric Soils List Reducing Conditions Listed on National Hydric Soils List Gleyed or Low-Chroma Colors Other (Explain in Remarks)							
Remarks: Hydric Soils Absent							
WETLAND DETERMINATION							
Hydrophytic Veg Wetland Hydrolo Hydric Soils Pres		Yes No 🕅 Yes No 🕅 Yes No 🕅	Is the Sampling P Within a Wetland				
Remarks:							

Appendix 3 – Project Site NCDWQ Stream Classification Forms

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

j

Date: 7-17-07 Project:	Mckee Cr	Eek Latit	ude:	
Evaluator: TP, LT Site:			jitude:	
Total Roints:	abarrus	Othe e.g. C	Ruad Name:	I
A. Geomorphology (Subtotal = 22_)	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	1	2	3
2. Sinuosity	0	Ô	2	3
3. In-channel structure: riffle-pool sequence	0	1	0	3
4. Soil texture or stream substrate sorting	0 -	1 1	ð	3
5. Active/relic floodplain	0	1 1	2	(3)
6. Depositional bars or benches	0	1	2	ð
7. Braided channel	\bigcirc	1	2	3
8. Recent alluvial deposits	0	0	2	3
9 ^a Natural levees	0	1	0	3
10. Headcuts	$\overline{0}$	1	2	3
11. Grade controls	0	05	1	1.5
12. Natural valley or drainageway	0	0.5	1	5
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	No	= 0	Yes	=3
^a Man-made ditches are not rated; see discussions in manu B. Hydrology (Subtotal = 9.5)	ial	<u> </u>		
14. Groundwater flow/discharge	<u> </u>	<u> </u>	2	3
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3
16. Leaflitter	1.5		0.5	0
17. Sediment on plants or debris	<u> </u>	0.5	1	1.5
18. Organic debris lines or piles (Wrack lines)	<u> </u>	0.5		1.5
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5
C. Biology (Subtotal = $/2.25$)				
20 ^b . Fibrous roots in channel		2	1	0
21 ^h . Rooted plants in channel	3	(D)	1	0
22. Crayfish	0	<u> </u>	1	1.5
23. Bivalves	0	\Box	2	3
24. Fish	0	0.5		1.5
25. Amphibians	0	0.5		1.5
26. Macrobenthos (note diversity and abundance)	0	0.5		1.5
27. Filamentous algae; periphyton	0		2	3
28. Iron oxidizing bacteria/fungus.	0	0.5	\bigcirc	1.5
29 ^b . Wetland plants in streambed			L = 1.5 SAV = 2	
Items 20 and 21 focus on the presence of upland plants,	Item 29 focuses on	the presence of a	iquatic or wetland pl	ants.

Notes: (use back side of this form for additional notes.)

North Carolina Division of Water Quality - Stream Identification Form; Version 3.1

Date: 7-17-07 Project: <i>N</i>	Ackee Cre	ek Latitu	ide:	
Evaluator: Site:		Long	itude:	_
Total Points: Stream is at least intermittent 15.5 County: $if \ge 19 \text{ or perennial if } \ge 30$	abarrus	Other e.g. Q	uad Name: #	2
A. Geomorphology (Subtotal = 7.5)	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	<u>1</u>	2	<u></u>
2. Sinuosity	1 6	1	2	3
3. In-channel structure: riffle-pool sequence		()	2	3
4. Soil texture or stream substrate sorting	0	(1)	2	3 -
5. Active/relic floodplain	<u> </u>	<u> </u>	2	3
6. Depositional bars or benches		Ø	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits		0	2	3
9 * Natural levees	Ø		2	3
10. Headcuts		1	2	3
11. Grade controls		0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	No	= 0	Yes	3 = 3
^a Man-made ditches are not rated; see discussions in manua B. Hydrology (Subtotal = 2.5) 14. Groundwater flow/discharge	" ∣		2	3
15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season	Õ	1	2	3
16. Lcaflitter	1.5	(n) —	0.5	0
17. Sediment on plants or debris		0.5	1	1.5
18. Organic debris lines or piles (Wrack lines)		0.5	1	1.5
19. Hydric soils (redoximorphic features) present?	No	= 0 Yes = 1.5		= 1,5
				-
C. Biology (Subtotal = 5.5)	(3)			
20 ^b . Fibrous roots in channel	1	2	1	
21 ^b . Rooted plants in channel			1	0
22. Crayfish		0.5	1	1.5
23. Bivalves	6		1	3
24. Fish		0.5	1	1.5
25. Amphibians			<u>1</u> 1	1.5
26. Macrobenthos (note diversity and abundance)	6	. <u>0.5</u> 1		<u>1.5</u>
27. Filamentous algae; periphyton			2	· ···
28. Iron oxidizing bacteria/fungus. 29 ^b . Wetland plants in streambed		0.5 CW = 0.75; OBL	-	1.5
^b Items 20 and 21 focus on the presence of upland plants, I				

Notes: (use back side of this form for additional notes.)

chure 124 7

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Date: 7-17-07	Project:	Mckee CI	eck Latitu	de:	
Evaluator: LT. TP	Site:		-	itude:	
Total Points: Stream is at least intermittent if \ge 19 or perennial if \ge 30	County:	Cabarru	Other e.g. Qi	vad Name:	#3
A Commentation of the second	2		20. N. J. B. B. C. B. C. M. M.	(The intervence of the second second	Realized and the state of the s
A. Geomorphology (Subtotal = $\sqrt{2}$			weak sa	Moderate	
1 [*] . Continuous bed and bank				2	<u>(3)</u>
2. Sinuosity		0	<u>6</u>	2	3
3. In-channel structure: rifle-pool seque			<u></u>	2	3
4. Soil texture or stream substrate sorti	ng	്ത്		2	3
5. Active/relic floodplain				·····	3
6. Depositional bars or benches 7. Braided channel		ô	· <u> </u>	Ø	3
8. Recent alluvial deposits			0	2	3
9 ^a Naturat levees		- ô-		2	·
10. Headcuts			1	<u>_</u>	3
11. Grade controls		0	0.5	<u>6</u>	3
12. Natural valley or drainageway		0	0.5	- <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> - <u></u> <u></u> <u></u> <u></u> <u></u> - <u></u> <u></u> <u></u> <u></u>	
 Second or greater order channel on USGS or NRCS map or other docu evidence. 	mented	(No		Yes	
^a Man-made ditches are not rated; see discu B. Hydrology (Subtotal = 3	ssions in ma	Inual			
14. Groundwater flow/discharge	<u> </u>		1	2	3
15. Water in channel and > 48 hrs since Water in channel dry or growing s		Ó	1	2	3
16. Leaflitter		1.5	0	0.5	0
17. Sediment on plants or debris			0.5	1	1.5
18. Organic debris lines or piles (Wrack	lines)	0	65	1	1.5
19. Hydric soils (redoximorphic features) present?	No :	= 0	Yes :	= 1.5
C. Biology (Subtotal =)					
20 ^b . Fibrous roots in channel		3	\bigcirc	1	0
21 ^b . Rooted plants in channel		3	<u> </u>	1	0
22. Crayfish			0.5	1	1.5
23. Bivalves	-	<u> </u>	1	2	3
24. Fish			0.5	1	1.5
25. Amphibians			0.5	1	1.5
26. Macrobenthos (note diversity and abur	idance)		0.5	1	1.5
27. Filamentous algae; periphyton			1	2	3
28. Iron oxidizing bacteria/fungus.		\bigcirc	0.5	1	1.5
29 ^b . Wetland plants in streambed				= 1.5 SAV = 2	
^b Items 20 and 21 focus on the presence of	upland plant	ls, Item 29 focuses on I	he presence of aq	uatic or wetland pla	ants.

Notes: (use back side of this form for additional notes.)

2

Ħ

North Carolina Division of Water Quality - Stream Identification Form; Version 3.1

$\frac{\text{Date: } 7 - 17 - 07 \qquad \text{Project: }}{\text{Evaluator: } 17 \text{TP} \qquad \text{Site:}}$	Nchee Che		itude:	
Total Points	Caberrus	Other		4
A. Geomorphology (Subtotal = 6.5)	Absent	Mad		C. CO.
A. Geomorphology (Subtotal = $(0 \cdot S_{-})$ 1°. Continuous bed and bank	0	1	Moderate 🤌 2	Strong 3
2. Sinuosity		- Ó	2	3
3. In-channel structure: riffle-pool sequence	Ŏ	<u>_</u>	2	3
4. Soil texture or stream substrate sorting		1	2	3
5. Active/relic floodplain		i	2	3
6. Depositional bars or benches	0	6	2	3
7. Braided channel	- o		2	3
8. Recent alluvial deposits	K	1	2	3
9 ° Natural levees		1	2	3
10. Headcuts		Ó	2	
11. Grade controls	Ó	0.5	1	1.5
12. Natural valley or drainageway		5	1	1.5
13. Second or greater order channel on existing		-		
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man	ual		Yes	= 3
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal =)	-	<u>ه</u>		
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man <u>B. Hydrology</u> (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge	6	<u></u>	2	3
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal =)	-			
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = /.5) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or	© © 1.5		2	3
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal =) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	© © 1.5	1	<u>2</u> 2	3
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man <u>B. Hydrology</u> (Subtotal = <u>/.5</u>) <u>14. Groundwater flow/discharge</u> <u>15. Water in channel and > 48 hrs since rain, or</u> <u>Water in channel dry or growing season</u> <u>16. Leaflitter</u>	@ 	1	2 2 0.5	3 3 0
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris	() () 1.5	1 0.5 0.5	2 2 0.5	3 3 0 1.5 1.5
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal =) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present?	1.5 0	1 0.5 0.5	2 2 0.5 1 1	3 3 0 1.5 1.5
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = /.5) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines)	1.5 0	1 0.5 0.5	2 2 0.5 1 1	3 3 0 1.5 1.5
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>4</u>)	0 0 0 0	1 0.5 0.5 0 0	2 2 0.5 1 1 Yes	3 <u>0</u> <u>1.5</u> <u>1.5</u> = 1.5
USGS or NRCS map or other documented evidence. Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or ples (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>4</u>) 20 ⁶ . Fibrous roots in channel		1 0.5 0.5	2 2 0.5 1 1 Yes	3 3 0 1.5 1.5 = 1.5
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal =) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20 ^b . Fibrous roots in channel		1 0.5 0.5 0 0	2 2 0.5 1 1 Yes 1 1 1	$ \frac{3}{0} \\ \frac{1.5}{1.5} \\ = 1.5 $ $ \frac{0}{0} \\ 0 $
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal =		1 0.5 0.5 0 0 0 0.5	2 2 0.5 1 1 1 Yes	$ \begin{array}{r} 3 \\ 3 \\ 0 \\ 1.5 \\ 1.5 \\ = 1.5 \\ 0 \\ 0 \\ 0 \\ $
USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel and > 48 hrs since rain, <u>or</u> Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debns 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>//</u>) 20 ⁶ . Fibrous roots in channel 21 ^b . Rooted plants in channel 22. Crayfish 23. Bivalves		1 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 0.5 1 1 Yes 1 1 1 1 2	$ \begin{array}{r} 3 \\ 0 \\ 1.5 \\ 1.5 \\ 1.5 \\ 0 \\ 0 \\ 1.5 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$
USGS or NRCS map or other documented evidence. Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>//</u>) 20 ^b . Fibrous roots in channel 21 ^b . Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish		1 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 0.5 1 1 Yes 1 1 1 1 2 1	$ \begin{array}{r} 3 \\ 0 \\ 1.5 \\ 1.5 \\ 1.5 \\ \hline 0 \\ 0 \\ \hline 0 \\ 1.5 \\ \hline 3 \\ 1.5 \\ \hline \end{array} $
USGS or NRCS map or other documented evidence. Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>//</u>) 20 ^b . Fibrous roots in channel 21. ^b . Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians		1 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 0.5 1 1 Yes 1 1 1 1 2 1	$ \begin{array}{r} 3 \\ 0 \\ 1.5 \\ 1.5 \\ \hline 1.5 \\ \hline 0 \\ 0 \\ \hline 0 \\ \hline 1.5 \\ \hline 3 \\ \hline 1.5 \\ \hline 1.5 \\ \hline 1.5 \\ \hline \end{array} $
USGS or NRCS map or other documented evidence. Man-made ditches are not rated; see discussions in man B. Hydrology (Subtotal = <u>/.5</u>) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>//</u>) 20 ^b . Fibrous roots in channel 21 ^b . Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance)		1 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 0.5 1 1 1 Yes 1 1 2 1 1 2 1 1 1 1	$ \begin{array}{r} 3\\ 0\\ 1.5\\ 1.5\\ 1.5\\ 0\\ 0\\ 0\\ 1.5\\ 3\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ \end{array} $

Notes: (use back side of this form for additional notes.)

Eptemeral Picture # 120

USACE AID#E	DWQ #	Site # # / (indicate on attached map)
Clear	CLEEK	
STREAM QUAL	ITY ASSE	SSMENT WORKSHEET
Provide the following information for the stream r		
i. Applicant's name:		valuator's name: Todd P ; Luke T
Date of evaluation: 7-17-07		ime of evaluation: <u>Early Afternoon</u>
Name of stream: Unamed Tr.b. to Mak	<u>ee Cre</u> ek 6. R	iverbasin: Jackin RiverBasin
Approximate drainage area:	8. S	tream order: 35 on Cabarrus Soil Survey
Length of reach evaluated: 50 feet	10.	County: Cabarrus
1. Site coordinates (if known): prefer in decimal deg	grees 12.	Subdivision name (if any):
atitude (cx. 34.872312): 35. 2683 N	Lo	ngitude (ex77.556611): 80. 6372 °W
Aethod location determined (circle): GPS Topo Sheet 3. Location of reach under evaluation (note nearby r		Photo/GIS Other GIS Otherand attach map identifying stream(s) location):
approximately 300 feet upstream	n from	its confluence with Maker Creek.
		restoration and Degetative Butter resto
5. Recent weather conditions: with	occubiona	Levening Storms
6. Site conditions at time of visit: Temperofune	was he	al 80's and Sunny
•		tion 10Tidal WatersEssential Fisherics Habitat
Trout WatersOutstanding Resource Water	rs Nutri	ent Sensitive WatersWater Supply Watershed(I-IV)
8. Is there a pond or lake located upstream of the evi	aluation point?	YES NO If yes, estimate the water surface area:
9. Does channel appear on USGS quad map? YES) NO 20.	Does channel appear on USDA Soil Survey? (ES) NO
I. Estimated watershed land use:% Residen	tial%	Commercial _% Industrial _40 % Agricultural
60 % Forester	i%	Cleared / Logged% Other ()
2. Bankfull width: 6	23.	Bank height (from bed to top of bank):
4. Channel slope down center of stream: 📈 Flat (0) to 2%)G	entle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
		requent meanderVery sinuousBraided channel
ocation, terrain, vegetation, stream classification, etc o each characteristic within the range shown for characteristics identified in the worksheet. Scores s characteristic cannot be evaluated due to site or we comment section. Where there are obvious changes nto a forest), the stream may be divided into smaller each. The total score assigned to a stream reach m highest quality.	c. Every character the ecoregion should reflect a eather condition in the character reaches that dispuse range between the theory of theory of the theory	Begin by determining the most appropriate ecoregion based on terristic must be scored using the same ecoregion. Assign points Page 3 provides a brief description of how to review the n overall assessment of the stream reach under evaluation. If a s, enter 0 in the scoring box and provide an explanation in the r of a stream under review (e.g., the stream flows from a pasture splay more continuity, and a separate form used to evaluate each een 0 and 100, with a score of 100 representing a stream of the
Evaluator's Signature Luk Truthel		Date 7-17-07

This channel evaluation form is intended to be used only as a guide to assist landowners and environmental professionals in gathering the data required by the United States Army Corps of Engineers to make a preliminary assessment of stream quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 939-876-8441 x 26.

STREAM QUALITY ASSESSMENT WORKSHEET

#34	CHARACTÉRISTICS		ION POINT	<u>RANGE</u> Mountain	SCORI
1.	Presence of flow / persistent pools in stream (no flow broathration = 0, strong flow = max points)	0-5	0-4	0-524	- 41
32.0	Evidence of past human alteration (extensive alteration = 0, no alteration = max points)	0-6	0-5	05 5.5	3
3	Riparian zone (no buffer = 0; configuous, wide buffer = max points)	0-6	0-4	0-5	2
4	Evidence of nutrient or chemical discharges (extensive discharges = 0; no discharges = max points)	0-5	0-4	0-4-	3
\$5	Groundwater discharge (no discharge = 0, springs, seeps, wetlands, etc. = max points);	0-3.2	0-4	0-4	3
6	Presence of adjacent floodplain (no floodplain = 0; extensive floodplain = max points)	3 0 − 4		0-2.5	4
	Entrenchment / flood plain access (deeply entrenched = 0; frequent flooding = max points)	0-5	0-4	0-2	3
8	 Presence of adjacent wetlands (no wetlands = 0; large adjacent wetlands = max points). 	0 = 6	0-4	0-2,5 5	2
2	Channel sinuosity (extensive channelization = 0; natural meander = max points)	0-5	0-4	0=3× ³	2
îò	Sediment input (extensive deposition= 0; hitle or po sediment = max points)	<u>0</u> -5	0-4	0-4	4
11	Size & diversity of channel bed substrate (fine, homogenous = 0; large, diverse sizes = max points)	NA*	0-4	0-5	2
12	Evidence of channel incision or widening (deeply incised = 0, stable bed & banks = max points)	.05.*··	0-4	0.45	4
×13	(severe eroston = 0, no eroston stable banks = max points)	0 - 5	- 0.−5	0=:5 ₁₅	4
14	Root depth and density on banks (no visible roots = 0, dense roots throughout = max points).	0-3	0-4	0 - 5 🔬	2
15,	Impact by agriculture, livestock, or timber, production (substantial impact =0, no evidence = max points).	0-5	- 0-4	0-5 or	1
16	Presence of riffle pool/ripple pool complexes (no riffles/ripples or pools= 0, well-developed = max points).	0+3		0-6	2
5174	Habitat complexity (little or no habitat = 0; frequent, varied habitats = max.points)	0-6	0-6	-0=6 ÷.	4
18.	Canopy coverage over streambed (no shading venetation = 0, continuous canopy = max points)	0-5	0-5	0-5	3
19	Substrate embeddedness (deeply embedded=0; loose structure= max)		0-4	044	3
205	Presence of stream invertebrates (see page 4); (no evidence = 0, common, numerous types = max points);	0-4	0-5	0 - 5 -	4
21	Presence of amphibians (no evidence = 0 common, numerous, types = max points) ***	0,4	0-4.,	0 = 4	3
22	Presence of fish (no evidence = 0; common, numerous types = max points)	0-4	- 7 0 − 4 -	0 + 4	3
236	Evidence of wildlife use (no evidence = 0 abundant evidence = max points)	0-6	Q=5 ···	0-5	3
	La Lotal Points Possible: See See See See See See See See See S	1005 jest	1 00 st.	100.002	
	FORAL SCORE false enteron in	ist page Is T			68

USACE AID#	DWQ #	Site # #2 (indicate on attached map)
STRE	Mc kee Cleck CAM QUALITY ASSESSM	ENT WORKSHEET
Provide the following information	e for the stream reach under assessmen	
1. Applicant's name:	2. Evaluato	r's name: Todd P, Luke T
3. Date of evaluation: $\frac{7}{7}$ - $\frac{7}{7}$ -	-07- 4. Time of 6	evaluation: <u>Failly Afternam</u>
5. Name of stream: <u>Mekee</u> (eeek 6. River bas	sin: <u>Yedkin River Basin</u>
7. Approximate drainage area:		
). Length of reach evaluated: 52	<u>5 feet</u> 10. County:	Cabarras County
11. Site coordinates (if known): p		sion name (if any);
Latitude (ex. 34.872312): <u>35. 2681 °N</u>	Longitude (ex. 77.556611): <u>80.6381~w</u>
 Location of reach under evaluat 	GPS Topo Sheet Onho (Aerial) Photo/G ion (note nearby roads and landmarks and of Clear Creek and	d attach map identifying stream(s) location): معنا معنا المعنان
Proposed channel work (if any);	Restoration (Provide ad	Stord Stucture in channel)
 Recent weather conditions: 	tot with occasional	evening Storms
16. Site conditions at time of visit:_	Temperature was high	D'S and Sunny
		Tidal WatersEssential Fisheries Habita
Trout WatersOutstandin	g Resource Waters Nutrient Sens	sitive WatersWater Supply Watershed(I-IV
18. Is there a pond or lake located u	pstream of the evaluation point? YES	NO If yes, estimate the water surface area:
19. Does channel appear on USGS	quad map? YES NO 20. Does ch	annel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use:	20% Residential% Comm	ercial% Industrial 🖉% Agricultural
	80% Forested% Clearc	d / Logged% Other (
22. Bankfull width: <u>20 - 25 '</u>		right (from bed to top of bank): 5-6'
Channel slope down center of st		to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:Straigh	itOccasional bendsFrequent	meanderVery sinuousBraided channel
location, terrain, vegetation, stream to each characteristic within the characteristics identified in the wo characteristic cannot be evaluated comment section. Where there are into a forest), the stream may be di	classification, etc. Every characteristic range shown for the ecoregion. Page rksheet. Scores should reflect an overal due to site or weather conditions, enter obvious changes in the character of a st vided into smaller reaches that display m	by determining the most appropriate cooregion based of must be scored using the same ecoregion. Assign point = 3 provides a brief description of how to review th il assessment of the stream reach under evaluation. If = 0 in the scoring box and provide an explanation in the ream under review (e.g., the stream flows from a pastur- hore continuity, and a separate form used to evaluate eac and 100, with a score of 100 representing a stream of the
Total Score (from reverse):	Comments:	
Evaluator's Signature	to Turket	Date 7-17-07 assist landowners and environmental professionals i

.

quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change - version 06/03. To Comment, please call 919-876-8441 x 26.

STREAM QUALITY ASSESSMENT WORKSHEET

	CHARACTERISEICS	the state of the s	ION POIN	Contrast a Destriction Republication of the left spread of	SCORE
		Coastal	 Piedmont 	Mountain .	
	Presence of flow / persistent pools in stream (no flow or saturation ≈ 0, strong flow ≑ max points)	05	<u>, </u> ,	···· 0 5	4
	Evidence of past human alteration	0 6		· · · · · · · · · · · · · · · · · · ·	11
	(extensive alteration = 0, no alteration = max points)	0-6	0-54		4
23.	Ripārian zone	$0 - 6^{-1}$.0-4-	0-5	4
	(no buffer = 0; contiguous, wide buffer = max points) Evidence of nutrient or chemical discharges	Andre de la constante de la co Na constante de la constante de			
4	(extensive discharges = 0; no discharges = max points)	0-5	∿≕ 0443	0 4	3 .
	Groundwater discharge	1. A. S.	0-4	- × 0-4	4
S.	(no discharge = 0; springs, seeps; withands; etc. = max points).				
5 6	Presence of adjacent floodplain (no floodplain = 0; extensive floodplain = max points);	0-4	0-4	0	4
	Entrenchment / floodplain access				3
	(deeply entrenched = 0; frequent flooding = max points)		0=4	0-2	ے
8	Presence of adjacent wetlands	0-6	0-4	0-2-2	3
	(no wetlands=0; large adjacent wetlands=max points). Channel sinuosity				
<u>.</u> 9	3. (extensive channelization = 0, natural meander = max points)	0 - 5	0-4	≥	3
10	Sediment input	0 °S	0-4	0-4	3
	<u>(extensive deposition = 0; little</u> or no sediment = mas points)				5
	Size & diversity of channel bed substrate (fine, homogenous = 0; large, diverse sizes = max points)	• NA*	³ 0 ⊢ 4 ~ 5 5	0-5 ct	3.
	Evidence of chaunel incision or widening				1
	(deeply incised = 0; stable bed & banks = max points).	0÷5.	0-4	0.5	3
	Presence of major bank failures	0 ÷ 5	0-5	045	3
8 14	(severe crosion = 0, no crosion, stable banks = max points) Root depth and density on banks			2 	<u> </u>
. 14	(no visible roots = 0, dense roots throughout = max points)	0 —3	0-4	0 5 5	2.
	Impact by agriculture-livestock, or timber, production	0-5	0-4	0-5	2
					3
16	Presence of riffle-pool/ripple-pool complexes (no riffles/ripples of pools = 0; well-developed = max points).	0-3		0-6	.3
	Habitat complexity				
	(little of no habitat = 0, frequent, varied habitats = max points).	0-6	06	0 −6-53-	6
8 18	Canopy coverage over streambed	\$~ <u>0</u> ~5		$0 - S^{-1}$	4
	<u>(no shading vegetation = 0; continuous canopy = max points)</u> Substrate embeddedness				-
1 9	(deeply embedded = 0; loose spucture = max)	NIA 🗠 👘	0-4	$0 \sim 0 - 4 q_{\rm eff}$	3
201	Presence of stream invertebrates (see page 4)	0-4		0.45	4
					7
2 21	Presence of amphibians (no evidence = 0, common, numerous types = max points)	0-4		0=4, *	3
	Presence of fish				-
22	(no evidence = 0, common, numerous types = max points)	0-4	<u>,0</u> −4:3	0-4.5	3
	Evidence of wildlife use	0-6	053 (2 ⁻	0-5	5
A HANGE	(no cvidence = 0; abundant evidence = max points)		THE PARTY IN		
10.1	Total Points Possible	s a (160-	100	100	
	TO DATE OF THE OWNER				0n
	TEN COLOR SCORE (also enter on it	ISEDAGE C			80

* These characteristics are not assessed in coastal streams.

North Carolina Division of Water Quality - Stream Identification Form; Version 3.1

Evaluator: 27 Site:		Long Othe e.g. C	jitude: Auad Name: Moderate 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{r} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1.5 \\ 1.5 \\ 1.5 \\ \end{array} $		
 A. Geomorphology (Subtotal = ///////////////////////////////////	Absent 0	e.g. 0	Auad Name:	$ \begin{array}{r} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1.5 \\ 1.5 \\ 1.5 \\ \end{array} $		
 Continuous bed and bank Sinuosity In-channel structure: riffle-pool sequence Soil texture or stream substrate sorting Active/relic floodplain Depositional bars or benches Braided channel Recent alluvial deposits Natural levees Headcuts Grade controls Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented <u>evidence</u>. Man-made ditches are not rated; see discussions in Hydrology (Subtotal = 3, 5) Groundwater flow/discharge. Water in channel and > 48 hrs since rain, o Water in channel dry or growing season Leaflitter Sediment on plants or debris Organic debris fines or piles (Wrack lines) 		1 1 1 1 1 0 1 1 0.5 0.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{r} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1.5 \\ 1.5 \\ 1.5 \\ \end{array} $		
 Sinuosity In-channel structure: riffle-pool sequence Soil texture or stream substrate sorting Active/relic floodplain Depositional bars or benches Braided channel Recent alluvial deposits Natural levees Headcuts Grade controls Second or greater order channel on existing USGS or NRCS map or other documented evidence. Man-made ditches are not rated; see discussions in Hydrology (Subtotal = 3, 5) Groundwater flow/discharge. Water in channel and > 48 hrs since rain, on Water in channel dry or growing season Leaflitter Sediment on plants or debris Organic debris fines or piles (Wrack lines) 		1 0 1 0.5 0.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 1.5 1.5		
 In-channel structure: rifile-pool sequence Soil texture or stream substrate sorting Active/relic floodplain Depositional bars or benches Braided channel Recent alluvial deposits 9° Natural levees Headcuts Grade controls Second or greater order channel on existing USGS or NRCS map or other documented evidence. * Man-made ditches are not rated; see discussions in Hydrology (Subtotal = 3,5) Groundwater flow/discharge. Water in channel and > 48 hrs since rain, on Water in channel dry or growing season Leaflitter Sediment on plants or debris Organic debris fines or piles (Wrack lines) 		1 0 1 0.5 0.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 1.5 1.5		
 4. Soil texture or stream substrate sorting 5. Active/relic floodplain 6. Depositional bars or benches 7. Braided channel 8. Recent alluvial deposits 9° Natural levees 10. Headcuts 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, on Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 		1 0 1 0.5 0.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
 5. Active/relic floodplain 6. Depositional bars or benches 7. Braided channel 8. Recent alluvial deposits 9° Natural levees 10. Headcuts 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. ° Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, on Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debriss 18. Organic debris fines or piles (Wrack lines) 		1 0 1 0.5 0.5	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 1.5 1.5		
 6. Depositional bars or benches 7. Braided channel 8. Recent alluvial deposits 9 ^a Natural levees 10. Headcuts 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. ^a Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 		1 0 1 0.5 0.5	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 0 \\ 0 \\ \end{array}$	3 3 3 3 1.5 1.5		
 7. Braided channel 8. Recent alluvial deposits 9° Natural levees 10. Headcuts 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, on Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 		1 0 1 0.5 0.5	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ \end{array}$	3 3 3 1.5 1.5		
 8. Recent alluvial deposits 9° Natural levees 10. Headcuts 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented <u>evidence</u>. ° Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, o Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 		0 1 1 0.5 0.5	2 2 2 1 2 1 2	3 3 3 1.5 1.5		
 9° Natural levees 10. Headcuts 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, o Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 		1 1 0.5 0.5		3 3 1.5 1.5		
 10. Headcuts 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented <u>evidence</u>. * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3.5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, <u>o</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debriss 18. Organic debris fines or piles (Wrack lines) 		1 0.5 0.5		3 1.5 1.5		
 11. Grade controls 12. Natural valley or drainageway 13. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented <u>evidence</u>. * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, <u>o</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 		0.5	00	1.5 1.5		
 12. Natural valley or drainageway 13. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented <u>evidence</u>. * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, o Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 		0.5	Yes	1.5		
 13. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented <u>evidence</u>. * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3.5) 14. Groundwater flow/discharge. 15. Water in channel and > 48 hrs since rain, <u>o</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 			Yes			
USGS or NRCS map or other documented <u>evidence</u> . * Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>o</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines)		0=0	Yes	= 3		
 ^a Man-made ditches are not rated; see discussions in B. Hydrology (Subtotal = 3,5) 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, o Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris fines or piles (Wrack lines) 	manual					
Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines)		1	2	3		
16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines)		1	2	3		
18. Organic debris lines or piles (Wrack lines)	1.5	Ø	0.5	0		
	0	().5)	1	1.5		
19. Hydric soils (redoximorphic features) preser	0	Q.5	1	1.5		
	nt? · No	No = 0 Yes = 1.5				
.C. Biology (Subtotal = <u>5,5</u>)				_		
20 ^b . Fibrous roots in channel	3	\odot	1	0		
21 ^b . Rooted plants in channel	(ð)	2	1 .	· 0		
22. Crayfish		0.5	· 1	1.5		
23. Bivalves	12	1	2	3.		
24. Fish		0.5	1	1.5		
25. Amphibians	Ø	0.5	1	1.5		
26. Macrobenthos (note diversity and abundance)		0.5] 1	1.5		
27. Filamentous algae; periphyton	6	1	2	3		
28. Iron oxidizing bacteria/fungus.	©_	0.5	1	1.5		
29 ^b . Wetland plants in streambed Items 20 and 21 focus on the presence of upland p	FAC = (0.5;)F.	ACIM = 0 75. 00	1 = 15 SAV = 2	0: Other = 0		

Notes: (use back side of this form for additional notes.)

& Makee Cak Refuseer.

SKRAM PE Rulalia Viminea 1A

USACE AID#	DWQ #_	Site #5 Indicate on attached map)
STR Provide the following information		ASSESSMENT WORKSHEET
1. Applicant's name: <u>FFP</u>		
3. Date of evaluation: $\frac{7-24}{-24}$		
5. Name of stream: $(LT + 0)$		
		6. River basin: Yand Kin 8. Stream order: 154
 7. Approximate drainage area: 9. Length of reach evaluated: 		
 Length of reach evaluated. Site coordinates (if known): 		
		12. Subdivision name (if any):
		Longitude (ex 77.556611); (Aerial) Photo/GIS Other GIS Other
		d landmarks and attach map identifying stream(s) location):
14. Proposed channel work (if any	1): None	
15. Recent weather conditions:		
16. Site conditions at time of visit	:	
17. Identify any special waterway	classifications known:	Section 10Tidal WatersEssential Fisheries Habita
Trout WatersOutstand	ing Resource Waters	
		point? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS	S quad map? YES NO	20. Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use:	_X_% Residential	% Commercial% Industrial% Agricultural
	% Forested	% Cleared / Logged% Other (
22. Bankfull width: 2-3'		23. Bank height (from bed to top of bank): $44-5^{11}$
24. Channel slope down center of	stream: \underline{X}_{Flat} (0 to 2%)	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
		Frequent meanderVery sinuousBraided channel
location, terrain, vegetation, strea to each characteristic within the characteristics identified in the w characteristic cannot be evaluated comment section. Where there ar into a forest), the stream may be reach. The total score assigned t highest quality.	m classification, etc. Every e range shown for the eco vorksheet. Scores should re d due to site or weather co- re obvious changes in the cl divided into smaller reaches o a stream reach must rang	ige 2): Begin by determining the most appropriate ecoregion based on y characteristic must be scored using the same ecoregion. Assign point coregion. Page 3 provides a brief description of how to review the reflect an overall assessment of the stream reach under evaluation. If is conditions, enter 0 in the scoring box and provide an explanation in the character of a stream under review (e.g., the stream flows from a pasture is that display more continuity, and a separate form used to evaluate each ge between 0 and 100, with a score of 100 representing a stream of the
Total Score (from reverse):	-/5 Comme	ents:

This channel evaluation form is intended to be used only as a guide to assist landowners and environmental professionals in gathering the data required by the United States Army Corps of Engineers to make a preliminary assessment of stream quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

STREAM QUALITY ASSESSMENT WORKSHEET

	CHARACIERISTICS		10N POIN		ÍSCORE
1	Presence of flog / persistent pools in stream		- 05-4°, st	$\hat{\mathbf{x}}_{i} = \hat{0} = \hat{\mathbf{x}}_{i} = \hat{\mathbf{x}}_{i}$	D
	Evidence of past human alteration (extensive alterations 0, no alteration analyzoints);	$\sum_{i=1}^{n-1} (i-1)^{i-1} = 0$	0.45		. 1
3	Riparian zone (no buffer=0, contiguous, wide buffer= max points)	0-6	1.0 1453	606-3 S	3
4.4	Evidence of nutrient or chemical discharges (extensive discharges = 0, no discharges = max points)	10- Sel-	1. Q4 . A	\$60-4-4	2
355 575	• • • • • • • • • • • • • • • • • • •	6.1	3.5 . 0 − 4. 25°	-0-4.	0
6. 6	Presence of adjacent floodplain (no	045	 0 − 4 	0=2	0
7	Letrenchment / flood plain access (deeply entrenched = 0. bequent flooding = max points) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	5-0-54-5	0-4	0-2-5	2
843	As the second adjacent wellands, second adjacent wellands, second second adjacent wellands and second second s	N 0 - 6	0-4.2	N 0-284	0
942	Channel sinuosity	0.25	0=4	10-10-2	2
1.0	Sediment input (extensive deposition= 0: little or no sediment = max points) -	\$*.0~5 ¹ .1	0-4	-0-4	3
	Size & diversity of channel bed substrate	Le INA*	* 0-4 u ·	-0-5 ⁷	1
12	Byidence of channel incision or widewing SE, (deeply moved= 0 stable bed & benks = max points)	- 	0=4	- 	3
13	Presence of major bank failures (************************************	~0 ⁻⁵ .*.	<u> </u>	23.0 ² 5	3
143	Root depth and density on banks (no visible roots = 0 dense roots throughout = max points)	0 = 3	20-0-4 ·	-0-5	3
15 y 15	Impact by agriculture, livestock, or timber production 2.22 (substantial impact =0, no evidence = max points).	-2.0+5.2.4	0,-4	05	4
16.	Presence of rittle-poplarie pool complexes (no rittles/ripples or pool == 0; well-developed == max points).	0-3	- 35-Q - 5-2 -		2
173	eHabital complexity (Inteor no habital = 0 strequent, varied harntars = max points):	S+ 0+6.4	1.0-6 s		5
18	Canopy coverage over streambed	.0. 5 .5.5	0.25		4
192	<pre>(noishadang Vegeration = 0; continuous canopy = max points) Substrate embeddedness (deeply embedded = 0; loose structure = max)</pre>	NA*	0.54	x->,0=4	3
20	Presence of stream invertebrates (see page 4)	0 ² +4)	0-5.	т _{Ах} 0 =15 х эс	0
21	2. (no evidence = 0, common, numerous types = max points) Presence of amphibians	0~4	0-4	0,-4	0
22°	<u> (no evidence = 0, common, numerous types, = max points)</u> Presence of fish	0-4	0-4	0-42	0
232	<pre>C_(no evidence = 0; common, numerous types = max points) L vidence of wildlife use</pre>	$0 = \hat{6}_{g} \circ \hat{a}_{g}$	0-5		4
	(no evidence = 0, abandant evidence = max points)	100.2	100		
	TOTAL SCORE (also enter outh				45
	paractaristics are not assessed in coastal streams				

* These characteristics are not assessed in coastal streams.

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Evaluator: Site: Longitude: Total Points: Other $e.g. Quad Name:$ Stream is at least intermittent if 2 90 operand IZ 23 Other $e.g. Quad Name:$ A. Geomorphology (Subtotal = Image: Control of the stream intermittent if 2 90 operand IZ 23 Absent Moderate Strong 1*. Continuous bed and bank 0 1 2 3 2. Sinuosity 0 1 2 3 3. In-channel structure: rifle-pool sequence 0 1 2 3 6. Depositional bars or benches 0 1 2 3 7. Braided channel 0 1 2 3 8. Recent alluvial deposits 0 0 2 3 9. Natural levees 0 1 2 3 10. Headouts 0 0 0 1 2 3 11. Second or greater order channel on existing USGS or NRCS map or other documented enderted channel 0 1 2 3 12. Natural valley or drainageway 0 0 1 2 3 13. Second or greater order channel on existing USGS or NRCS map	Date: 7-24-07	Project:		Latitu	de:	
Under state set intermittent County: e.g. Quad Name: A. Geomorphology (Subtal =) Absent Weak Moderate Strong 1* Continuous bed and bank 0 1 2 3 Absent Weak Moderate Strong 1 2 3 Absent Weak Moderate Strong 1 2 3 In channel structure: nflie-pool sequence O 1 2 3 Colspon 1 2 3 In channel structure: nflie-pool sequence O 1 2 3 Colspon 1 2 3 Colspon 1 2 3 Colspan="2"		Site:		Longi	tude:	
1. Scotticup loop (S) (Construct 1 2 3 1. Continuous bed and bank 0 1 2 3 2. Sinuosity 0 1 2 3 3. In-channel structure: rifile-pool sequence 0 1 2 3 4. Soit texture or stream substrate sorting 0 1 2 3 5. Active/relic floodplain 0 1 2 3 6. Depositional bars or benches 0 1 2 3 7. Braided channel 0 1 2 3 8. Recent alluvial deposits 0 0 2 3 10. Headcuts 0 1 2 3 11. Grade controls 0 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1 1.5 13. Second or greater order channel on existing usder in channel and set discussions in manual 8 9 Natural set of y or growing season 14. Groundwater flow/discharge 0 1 2 3 1 14. Groundwater flow/discharge 0 0 1 1.5<	Stream is at least intermittent 19 26	County:				
1. Scotticup loop (S) (Construct 1 2 3 1. Continuous bed and bank 0 1 2 3 2. Sinuosity 0 1 2 3 3. In-channel structure: rifile-pool sequence 0 1 2 3 4. Soit texture or stream substrate sorting 0 1 2 3 5. Active/relic floodplain 0 1 2 3 6. Depositional bars or benches 0 1 2 3 7. Braided channel 0 1 2 3 8. Recent alluvial deposits 0 0 2 3 10. Headcuts 0 1 2 3 11. Grade controls 0 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1 1.5 13. Second or greater order channel on existing usder in channel and set discussions in manual 8 9 Natural set of y or growing season 14. Groundwater flow/discharge 0 1 2 3 1 14. Groundwater flow/discharge 0 0 1 1.5<		11				-
2. Sinuosity00233. In-channel structure: riffle-pool sequence01234. Soil texture or stream substrate sorting01235. Active/relic floodplain01236. Depositional bars or benches01237. Braided channel01238. Recent alluvial deposits00239. Natural levees012310. Headouts12311. Grade controls00.511.512. Natural valley or drainageway00.511.513. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence.23* Man-made ditches are not rated, see discussions in manual012314. Groundwater flow/discharge012315. Water in channel and > 48 hrs since rain, or Water in channel - dry or growing season12316. Leaflitter1.500.511.519. Hydric soils (redoximorphic features) present?No = 0.511.520°. Fibrous roots in channel321021°. Rooted plants in channel321022°. Fibrous roots in channel321023. Bivalves0123120°. Fibrous roots in channel311.51.5	_A. Geomorphology (Subtotal =		Absent	Weak	Moderate	Strong
3. In-channel structure: rifile-pool sequence 0 1 2 3 4. Solit texture or stream substrate sorting 0 1 2 3 5. Active/relic floodplain 0 1 2 3 6. Depositional bars or benches 0 1 2 3 7. Braided channel 0 1 2 3 8. Recent alluvial deposits 0 0 2 3 9 ^a Natural levees 0 1 2 3 10. Headcuts 0 1 2 3 11. Grade controls 0 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1 1.5 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. Ves = 3 Ves = 3 * Man-made diches are not rated, see discussions in manual 8. Hydrology (Subtotal = $\frac{1}{2}$) 1 2 3 14. Groundwater flow/discharge 0 1 2 3 1 1.5 15. Water in channel and > 48 hrs since rain, or water in channel and > 48 hrs since rain, or water in channel and > 48 hrs since rain, or water in channel = 0	1 ^a . Continuous bed and bank		0	1	2	
4. Soit texture or stream substrate sorting 0 1 2 3 6. Depositional bars or benches 0 1 2 3 7. Braided channel 0 1 2 3 8. Recent alluvial deposits 0 0 2 3 9 ³ Natural levees 0 1 2 3 10. Headcuts 0 0 0.5 1 1.5 11. Grade controls 0 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1 1.5 13. Seecond or greater order channel on existing USGS or NRCS map or other documented evidence. Ves = 3 Yes = 3 * Man-made diches are not rated, see discussions in manual 1 2 3 14. Groundwater flow/discharge 0 1 2 3 15. Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel 0 0 0 1 1.5 18. Organic debris lines or piles (Wrack lines) 0 0 0 1 1.5 20°. Fibrous roo			<u>R</u>	>	2	-
5. Active/relic floodplain1236. Depositional bars or benches01237. Braided channel01237. Braided channel01239Natural ideposits00239Natural ideposits012310. Headcuts1231111. Grade controls00.511.512. Natural valley or drainageway00.511.513. Second or greater order channel on existing USGS or NRCS map or other documented evidence.Ves = 3Yes = 3* Man-made diches are not rated, see discussions in manual012314. Groundwater flow/discharge0123115. Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or C. Biology (Subtotal =)12319. Hydric soils (redoximorphic features) present?00.511.519. Hydric soils (redoximorphic features) present?00.511.520°. Fibrous roots in channel321021. Biology (Subtotal =	3. In-channel structure: nffle-pool sequ	ence	l (O)	1	_	
6. Depositional bars or benches 0 1 2 3 7. Braided channel 0 1 2 3 8. Recent alluvial deposits 0 0 2 3 9 ³ Natural levees 0 1 2 3 10. Headcuts 0 1 2 3 11. Grade controls 0 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1 1.5 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. Yes = 3 Yes = 3 * Man-made ditches are not rated, see discussions in manual Yes = 3 Yes = 3 14. Groundwater flow/discharge 0 1 2 3 15. Water in channel - dry or growing season 1 2 3 1 1.5 17. Sectiment on plants or debris 0 0 1 1 1 2 19. Hydric soils (redoximorphic features) present? No=0 Yes = 1.5 1 1.5 20°. Fibrous roots in channel 3 2 1 0 2 3 21°. Rooted	4. Soil texture or stream substrate sort	ing		1		<u> </u>
7. Braided channelImage: Constraint of the sector of the sec	5. Active/relic floodplain	_		1		
8. Recent alluvial deposits 0 0 2 3 g^3 Natural levees 0 1 2 3 10. Headcuts 1 2 3 11. Grade controls 0 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1 1.5 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. Ves = 3 Yes = 3 * Man-made diches are not rated, see discussions in manual Ves = 0 Yes = 3 B. Hydrology (Subtotal = $\frac{1}{c^2}$) 1 2 3 14. Groundwater flow/discharge 0 1 2 3 15. Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or 1 2 3 16. Leaflitter 1.5 0 0.5 1 1.5 17. Sediment on plants or debris 0 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = 1.5 2 C. Biology (Subtotal = $\underbrace{12}$) 2 1 0 2 1 20 ^b . Fibrous roots in c	6. Depositional bars or benches		J J			3
9 * Natural levees012310. Headcuts012311. Grade controls00.511.512. Natural valley or drainageway000.5113. Second or greater order channel on existing USGS or NRCS map or other documented evidence. $Man-made ditches are not rated, see discussions in manual8. Hydrology(Subtotal = 1 - 2)Yes = 314. Groundwater flow/discharge01215. Water in channel and > 48 hrs since rain, orWater in channel12316. Leaflitter1.511.5001120°. Fibrous roots in channel21001121°. Rooted plants in channel212$				1	2	
10. Headcuts 1 2 3 11. Grade controls 0 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1 1.5 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. Ves = 3 Yes = 3 * Man-made diches are not rated, see discussions in manual Ves = 3 Yes = 3 8. Hydrology (Subtotal = 0 1 2 3 14. Groundwater flow/discharge 0 1 2 3 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 1 2 3 16. Leallitter 1.5 1 1.5 0 0.5 0 17. Sediment on plants or debris 0 0.5 1 1.5 0 18. Organic debris lines or piles (Wrack lines) 0 0.5 1 1.5 19. Hydric soits (redoximorphic features) present? No = 0 Yes = 1.5 0 20°. Fibrous roots in channel 3 2 1 0 21°. Rooted plants in channel 3 2 1 0 22. Crayfish			-	O .	2	
11. Grade controls00.511.512. Natural valley or drainageway00.51(15)13. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. $26 = 0$ Yes = 3* Man-made ditches are not rated, see discussions in manual $26 = 0$ Yes = 3B. Hydrology (Subtotal = 2)012314. Groundwater flow/discharge012315. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season00.5016. Leafitter1.500.5017. Sediment on plants or debris00.511.518. Organic debris lines or piles (Wrack lines)00.511.519. Hydric soils (redoximorphic features) present?No = 0Yes = 1.5Yes = 1.5C. Biology (Subtotal = $5 + 1$)2100.5120°. Fibrous roots in channel321021°. Rooted plants in channel321022. Crayfish00.511.523. Bivalves012324. Fish00.511.525. Amphibians00.511.526. Macrobenthos (note diversity and abundance)0.511.527. Filamentous algae; periphyton0.511.528. Iron exidizing hacteria/fungus.00.511.5	9 ^a Natural levees			<u> </u>	2	3
12. Natural valley or drainageway00.51(1.5)13. Second or greater order channel on existing USGS or NRCS map or other documented evidence.Yes = 3* Man-made diches are not rated, see discussions in manualYes = 3B. Hydrology (Subtotal = 2)1214. Groundwater flow/discharge0115. Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel and > 48 hrs since rain, or Water in channel1.500.511.519. Hydric soils (redoximorphic features) present?No = 0Yes = 1.520°. Fibrous roots in channel32120°. Fibrous roots in channel32120°. Fibrous roots in channel31220°. Fibrous roots in channel00.5121°. Rooted plants in channel00.5123. Bivalves00.51<					2	
13. Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented $26 = 0$ Yes = 3 * Man-made ditches are not rated, see discussions in manual 8. Hydrology (Subtotal = $\frac{1}{2}$) 9 14. Groundwater Row/discharge 0 1 2 3 15. Water in channel and > 48 hrs since rain, or 1 2 3 16. Leaflitter 1.5 0 0.5 0 17. Sediment on plants or debris 0 0.5 1 1.5 18. Organic debris lines or piles (Wrack lines) 0 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = 1.5 7 2 3 20 ^b . Fibrous roots in channel 3 2 1 0 2 1 0 21 ^b . Rooted plants in channel 3 2 1 0 2 3 2 3 24 ^b . Fibrous roots in channel 3 2 1 0 2 3 2 3 3 2 1 0 3 2 1 0 3 2 1 1.5 <td< td=""><td></td><td></td><td>0</td><td>0.5</td><td></td><td></td></td<>			0	0.5		
USGS or NRCS map or other documented evidence.Yes = 3* Man-made diches are not rated, see discussions in manual* $6 = 0$ Yes = 3B. Hydrology (Subtotal = c^2)012314. Groundwater flow/discharge012315. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season012316. Leaflitter1.500.50017. Sediment on plants or debris00.511.518. Organic debris lines or piles (Wrack lines)00.511.519. Hydric soils (redoximorphic features) present?No = 0Yes = 1.5C. Biology (Subtotal = $s + s$)20°1020°. Fibrous roots in channel321021°. Rooted plants in channel321022. Crayfish00.511.523. Bivalves00.511.524. Fish00.511.525. Amphibians00.511.526. Macrobenthos (note diversity and abundance)0.511.527. Filamentous algae; periphyton12328. Iron oxidizing bacteria/fungus.00.511.5			0	0.5	1	(<u>1</u> .5)
* Man-made ditches are not rated, see discussions in manual B. Hydrology (Subtotal = 1 14. Groundwater flow/discharge 0 1 2 3 15. Water in channel and > 48 hrs since rain, or 0 1 2 3 16. Leaflitter 1.5 0 0.5 0 17. Sediment on plants or debris 0 0.5 1 1.5 18. Organic debris lines or piles (Wrack lines) 0 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = 1.5 Yes = 1.5 C. Biology (Subtotal = 5.4%) 0 0.5 1 0 20°. Fibrous roots in channel 3 2 1 0 0 2 1 0 21°. Rooted plants in channel 3 2 1 0 0.5 1 1.5 23. Bivalves 0 0.5 1 1.5 2 3 2 1 0 24. Fish 0 0.5 1 1.5 2 3 2 3 2 3 3 2 3 <	USGS or NRCS map or other doc		Re	=0	Yes	= 3
B. Hydrology (Subtotal = 2)012314. Groundwater flow/discharge012315. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season012316. Leaflitter1.500.5017. Sediment on plants or debris00.511.518. Organic debris lines or piles (Wrack lines)00.511.519. Hydric soils (redoximorphic features) present?No=0Yes = 1.520°. Fibrous roots in channel321021°. Rooted plants in channel321022. Crayfish00.511.523. Bivalves00.511.524. Fish00.511.526. Macrobenthos (note diversity and abundance)00.511.527. Filamentous algae; periphyton012328. Iron oxidizing bacteria/fungus.0123		ussions in man	ual			
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season12316. Leaflitter1.500.5017. Sediment on plants or debris000.511.518. Organic debris lines or piles (Wrack lines)00.511.519. Hydric soils (redoximorphic features) present?No = 0Yes = 1.5C. Biology (Subtotal =)020°. Fibrous roots in channel321021°. Rooted plants in channel321022. Crayfish00.511.523. Bivalves012324. Fish00.511.525. Amphibians00.511.526. Macrobenthos (note diversity and abundance)0.511.527. Filamentous algae; periphyton012328. Iron oxidizing bacteria/fungus.00.511.5	1	_)	6		_	
Water in channel dry or growing season V I Z 3 16. Leaflitter 1.5 0.5 0 17. Sediment on plants or debris 0 0.5 1 1.5 18. Organic debris lines or piles (Wrack lines) 0 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = 1.5 Yes = 1.5 C. Biology (Subtotal =) 20°. Fibrous roots in channel 3 2 1 0 20°. Fibrous roots in channel 3 2 1 0 0 0.5 1 1.5 20°. Fibrous roots in channel 3 2 1 0 0 0.5 1 1.5 20. Crayfish 0 0.5 1 1.5 3 2 3 3 2 3 3 2 3<			(0)	1	2	3
Water in channel dry or growing season 0 0 0 0 0 0 16. Leaflitter 1.5 0 0.5 1 1.5 0 17. Sediment on plants or debris 0 0.5 1 1.5 0 18. Organic debris lines or piles (Wrack lines) 0 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = 1.5 C. Biology (Subtotal =)			67	, <u> </u>	2	3
17. Sediment on plants or debris 0 0 1 1.5 18. Organic debris lines or piles (Wrack lines) 0 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = 1.5 C. Biology (Subtotal =) 1 0 20 ^b . Fibrous roots in channel 3 2 1 0 21 ^b . Rooted plants in channel 3 2 1 0 22. Crayfish 0.5 1 1.5 23. Bivalves 0 0.5 1 1.5 24. Fish 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0.5 1 1.5 27. Filamentous algae; periphyton 0 1 2 3 28. Iron oxidizing bacteria/fungus. 0 0.5 1 1.5		season				
18. Organic debris lines or piles (Wrack lines) 0 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = 1.5 C. Biology (Subtotal =) 20°. Fibrous roots in channel 3 20°. 1 0 20°. Fibrous roots in channel 3 2 1 0 21°. Rooted plants in channel 3 2 1 0 22. Crayfish 0 0.5 1 1.5 23. Bivalves 0 1 2 3 24. Fish 0 0.5 1 1.5 25. Amphibians 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 1.5 27. Filamentous algae; periphyton 1 2 3 3 28. Iron oxidizing bacteria/fungus. 0 0.5 1 1.5						
19. Hydric soils (redoximorphic features) present?Yes = 1.5C. Biology (Subtotal = 5)Yes = 1.520°. Fibrous roots in channel321021°. Rooted plants in channel321022. Crayfish00.511.523. Bivalves012324. Fish00.511.525. Amphibians00.511.526. Macrobenthos (note diversity and abundance)00.511.527. Filamentous algae; periphyton12328. Iron oxidizing bacteria/fungus.00.511.5		. ()			-	
C. Biology (Subtotal = 5.1%)20 ^b . Fibrous roots in channel321 ^b . Rooted plants in channel221 ^b . Rooted plants in channel222. Crayfish023. Bivalves024. Fish025. Amphibians026. Macrobenthos (note diversity and abundance)0.527. Filamentous algae; periphyton028. Iron oxidizing bacteria/fungus.029. Iron oxidizing bacteria/fungus.0			~			
20°. Fibrous roots in channel 3 2 1 0 21°. Rooted plants in channel 3 2 1 0 22. Crayfish 0 0.5 1 1.5 23. Bivalves 0 1 2 3 24. Fish 0 0.5 1 1.5 25. Amphibians 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 1.5 27. Filamentous algae; periphyton 0 1 2 3 28. Iron oxidizing bacteria/fungus. 0 0.5 1 1.5		s) present ? ·			Yes:	= 1.5
21 ^b . Rooted plants in channel 2 1 0 22. Crayfish 0.5 1 1.5 23. Bivalves 0 1 2 3 24. Fish 0 0.5 1 1.5 25. Amphibians 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 1.5 27. Filamentous algae; periphyton 0 0.5 1 1.5 28. Iron oxidizing bacteria/fungus. 0 0.5 1 1.5)				
21 . Robied plants in channel 0 2 1 0 22. Crayfish 0 0.5 1 1.5 23. Bivalves 0 1 2 3 24. Fish 0 0.5 1 1.5 25. Amphibians 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 1.5 27. Filamentous algae; periphyton 0 0.5 1 1.5 28. Iron oxidizing bacteria/fungus. 0 0.5 1 1.5					1	0
23. Bivalves 1 2 3 24. Fish 0 0.5 1 1.5 25. Amphibians 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 1.5 27. Filamentous algae; periphyton 0 1 2 3 28. Iron oxidizing bacteria/fungus. 0 -0.5 1 1.5	21 ^b . Rooted plants in channel		<u> </u>	2	1	0
24. Fish 0 0.5 1 1.5 25. Amphibians 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 1.5 27. Filamentous algae; periphyton 0 1 2 3 28. Iron oxidizing bacteria/fungus. 0 -0.5 1 1.5	22. Crayfish			0.5	1	1.5
24. Fish 0 0.5 1 1.5 25. Amphibians 0 0.5 1 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 1.5 27. Filamentous algae; periphyton 0 1 2 3 28. Iron oxidizing bacteria/fungus. 0 -0.5 1 1.5	23. Bivalves			1	2	
26. Macrobenthos (note diversity and abundance)0.511.527. Filamentous algae; periphyton12328. Iron oxidizing bacteria/fungus.0-0.511.5	24. Fish		V		1	
27. Filamentous algae; periphyton 0 1 2 3 28. Iron oxidizing hacteria/fungus. 0 -0.5 1 1.5					1	· ·
28. Iron oxidizing bacteria/fungus 0 1 1.5	26. Macrobenthos (note diversity and abu	ndance)		0.5		
				1	2	
			(0)		-	
29 ^b . Wotland plants in streambed $FAC = 0.5$; $FACW = 0.75$; OBL = 1.5 $SAV = 2.0$; Other = 0	29 ^b . Wetland plants in streambed					

Notes: (use back side of this form for additional notes.)

Sketch:

Gron Confluence w/ MCKee Cyck 30'

A

USACE AID#	DWQ #	
STRE.	AM QUALITY ASSE	SSMENT WORKSHEET
Provide the following information :		
1. Applicant's name:		valuator's name: Lake T
3. Date of evaluation: 7-24-0		ime of evaluation: 12,00
5. Name of stream: Ut to 1		iver basin: Yalkin RB
7. Approximate drainage area:		tream order: / <u>5</u>
9. Length of reach evaluated: 52	<u> </u>	County: Caberrus
11. Site coordinates (if known): pre	fer in decimal degrees. 12.	Subdivision name (if any):
Latitude (ex. 34.872312):	Lo	ngitude (ex77.556611):
		Photo/GIS Other GIS Other
14. Proposed channel work (if any):_		
15. Recent weather conditions:		
16. Site conditions at time of visit:		
17. Identify any special waterway cla	ssifications known:Sect	ion 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding	Resource Waters Nutrie	ent Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located up	stream of the evaluation point?	YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS qu	ad map? YES NO 20. J	Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use:	% Residential%	Commercial% Industrial% Agricultural
	% Forested%	Cleared / Logged% Other (
22. Bankfull width:	23. 1	Bank height (from bed to top of bank):
24. Channel slope down center of stre	am:Flat (0 to 2%)G	entle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
		requent meanderVery sinuousBraided channel
location, terrain, vegetation, stream of to each characteristic within the ra- characteristics identified in the work	lassification, etc. Every charac nge shown for the ecoregion. sheet. Scores should reflect ar	Begin by determining the most appropriate ecoregion based or teristic must be scored using the same ecoregion. Assign points Page 3 provides a brief description of how to review the overall assessment of the stream reach under evaluation. If a s, enter 0 in the scoring box and provide an explanation in the

comment section. Where there are obvious changes in the character of a stream under review (e.g., the stream flows from a pasture into a forest), the stream may be divided into smaller reaches that display more continuity, and a separate form used to evaluate each reach. The total score assigned to a stream reach must range between 0 and 100, with a score of 100 representing a stream of the highest quality.

57 Total Score (from reverse):

Comments:

Evaluator's Signature_____ Date_____ This channel evaluation form is intended to be used only as a guide to assist landowners and environmental professionals in gathering the data required by the United States Army Corps of Engineers to make a preliminary assessment of stream quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change - version 06/03. To Comment, please call 919-876-8441 x 26.

STREAM QUALITY ASSESSMENT WORKSHEET

CHARACTERISTICS	ALL AND A REAL PROPERTY AND A R	<u>ion poin</u> t		SCORE
Presence of flow / persistent pools in stream	Coastala.	* Piedmont	Mountain	
3 3 3 3 3 3 3 5 3 5 5 5 5 5 5 5 5 5 5	z = 0 = 5 + 2	~ 0.4	$0=5^{1+2}$	O
2 2 2 2 2 Evidence of past human alteration 2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$0 - 6^{-1}$, r	0-5	1-10-5-5	4
Riparian zone	0.6	0-4-;		4
Level Composition Composite and		**************************************	0-474	4
Groundwater, discharge, Service and set of the service of the ser		0 - 4	0-4-5	0
Presence of adjacent floodplain extra state and the presence of adjacent floodplain extra state and the presence of adjacent floodplain and points are stated at the presence of a state and the presence of a state at the presence of a sta	- +0 ±4	0-4	0-2	2
Entrenchment / floodplain access (deeply entrenched = 0 frequent flooding = max points) =	22 0 - 5 g s	0 4 3.4		0
3.8 Lease Presence of adjacent wetlands and points of adjacent wetlands and points of the points	0 6	0 4 1	***0=2.1×	٥
Channel sinuosity (extensive channelization = 0; natural meander = max points)	4. 0°-5 . 1	0-4		1
Sediment input (extensive deposition = 0. little of no sediment = max points)	÷., 0 - 5	0-4	0-4	3
Size & diversity of channel bed substrate - testa = 1 (fine, homogenous = 0, large, diverse sizes = max points) .	C:NA*	9 <u>0</u> 4	05	4
Evidence of channel incision or widening 2 (deeply incised = 0; stable bed & banks - max points)		$0 \rightarrow 4$	0-5	3
Presence of major bank failures (severe erosion = 0 - no erosion, stable banks = max points);	5 Mg 25	eje 0.45		4
Root depth and density on banks	0 -3. 7		0.552	3
3 Impact by agriculture, livestock or timber production was substantial impact =0, no evidence = max points)	-0-55 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	0-4	Q 5.5 - Q	4
16 Presence of riffle pool/ripple pool complexes	-0 = 3	·	0 = 6	3
Habitat complexity Solution of more abitat = 0, incluent, varied habitats = max points)	0 6	0=6		6
Camopy coverage over streambed 418 (no shading vegetation = 0; continuous canopy = max points)	0.55	0 5 2	1 4 0 -5 -5	5
10 (deeply embedded = 0, Toose structure = max)	eNA - ee	0-4	04	3
Presence of stream invectebrates (see page 4)	0 4 ***		0-5	0
Presence of amphibians (no evidence = 0, common, numerous types = max points)	0-4	0-4	0-4	0
Presence of fish (no evidence = 0; common, numerous types = max points) ;	0 - 4	0-4	0-4 7	0
Evidence of wildlife use (no evidence = 0: abundant evidence = max points):	06	- 10-5	0-5	4
Tutal Points Possible	100	100	100	
TOTAL SCORE (also enter on fir	st page) 👯	> 24 > 20	4. <i>419</i> - 17	57

* These characteristics are not assessed in coastal streams.

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Evaluator: / T Site:		Long	ude: gitude:	
Total Points: Stream is at least intermittent \mathbf{D}, \mathbf{X} County if ≥ 19 or perennial if ≥ 30	Cabanto	Othe		
12	f souther the second side of the	0.2020-0220-01-0228	a la se la la teles, estando a la secolo de la	and the second second
A. Geomorphology (Subtotal = [)		Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0		2	
2. Sinuosity	0		2	3
3. In-channel structure: nffle-pool sequence	0		2	3
 Soil texture or stream substrate sorting 		1	2	
5. Active/relic floodplain		1	2	3
Depositional bars or benches	0		2	3
7. Braided channel		1	2	. 3
8. Recent alluvial deposits	0	1	<u>Ø</u> ->	3
9 ^a Natural levees	<u>6</u>	1	2	3
10. Headcuts	()	1	2	3
11. Grade controls		0.5	- D	1.5
12. Natural valley or drainageway	· 0	0.5		1.5
13. Second or greater order channel on <u>existing</u> USCS or NRCS map or other documented evidence. Man-made ditches are not rated; see discussions in r	nanual		Yes =	- 3
B. Hydrology (Subtotal =)	1 - C			
14. Groundwater flow/discharge		1		3
 Groundwater flow/discharge Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 		1	2	3
 Groundwater flow/discharge Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 				
 Groundwater flow/discharge Water in channel and > 48 hrs since rain, or Water in channel dry or growing season Leaflitter 			2	3
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 			2	3 0
14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u>			2 0.5 1	3 0 1.5 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present 			2 0.5 1 1	3 0 1.5 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 			2 0.5 1 1	3 0 1.5 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = 5.15) 20°. Fibrous roots in channel 			2 0.5 1 1 Yes =	3 0 1.5 1.5 1.5 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = 5.75) 20°. Fibrous roots in channel 21°. Rooted plants in channel 			2 0.5 1 1 Yes =	3 0 1.5 1.5 1.5 0 0 0
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = <u>5.15</u>) 20°. Fibrous roots in channel 21°. Rooted plants in channel 22. Crayfish 			2 0.5 1 1 Yes =	3 0 1.5 1.5 1.5 0 0 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = <u>5.75</u>) 20⁶. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 		1 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c c} 2 \\ \hline 0.5 \\ \hline 1 \\ \hline 1 \\ \hline Yes = \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 2 \\ \end{array} $	3 0 1.5 1.5 1.5 0 0 1.5 3
14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = <u>5.165</u>) 20°. Fibrous roots in channel 21°. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish		1 05 05 0 2 0.5 1 0.5 1 0.5	2 0.5 1 1 Yes =	3 0 1.5 1.5 1.5 0 0 1.5 3 1.5
14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = 5.165) 20°. Fibrous roots in channel 21°. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians		1 05 05 0 2 2 0.5 1 0.5 0.5 0.5	$ \begin{array}{c c} 2 \\ \hline 0.5 \\ \hline 1 \\ 1 \\ \hline Yes = \\ \hline 1 \\ 1 \\ 2 \\ \hline 1 \\ 1 \\ 2 \\ 1 \\ $	3 0 1.5 1.5 1.5 0 0 1.5 .5 .5 .5 .5 .5 .5 .5 .5 .5
14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = 5.165) 20°. Fibrous roots in channel 21°. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance)		$ \begin{array}{c} 1 \\ \hline 0.5 \\ \hline $	2 0.5 1 1 Yes =	3 0 1.5 1.5 1.5 0 0 0 1.5 3 1.5 1.5 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present C. Biology (Subtotal = <u>5.45</u>) 		1 05 05 0 2 2 0.5 1 0.5 0.5 0.5	$ \begin{array}{c c} 2 \\ \hline 0.5 \\ \hline 1 \\ 1 \\ \hline Yes = \\ \hline 1 \\ 1 \\ 2 \\ \hline 1 \\ 1 \\ 2 \\ 1 \\ $	3 0 1.5 1.5 1.5 0 0 0 1.5 3 1.5 1.5 .5 .5 .5 .5 .5 .5 .5 .5 .5

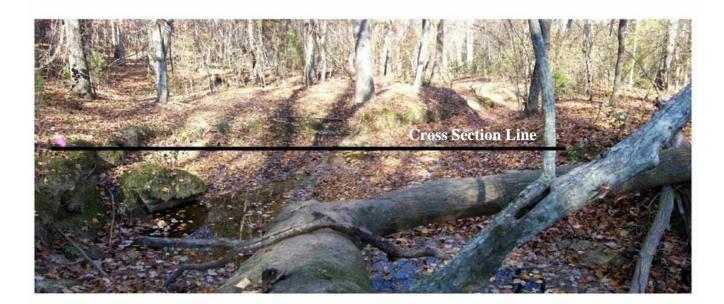
Notes: (use back side of this form for additional notes.)

Elmin Steerin Bed So from picker Sketch:

STREAM QUALITY A	ASSESSMENT WORKSHEET
Provide the following information for the stream reach un	der assessment:
1. Applicant's name:	2. Evaluator's name: Luta Treschat
3. Date of evaluation: 7-24-07	4. Time of evaluation:
5. Name of stream: UT to Mckee Creek	6. River basin: Ladkin River BASin
7. Approximate drainage area:	8. Stream order:
9. Length of reach evaluated: 50'	10. County: Cakarrus
11. Site coordinates (if known): prefer in decimal degrees.	12. Subdivision name (if any):
Latitude (ex. 34.872312):	Longitude (ex77.556611):
	(Acrial) Photo/GIS Other GIS Other
14. Proposed channel work (if any):	
15. Recent weather conditions:	
16. Site conditions at time of visit:	
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters	_Nutrient Sensitive WatersWater Supply Watershed(l-IV)
18. Is there a pond or lake located upstream of the evaluation $% \left($	point? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use:% Residential	35% Commercial% Industrial 50% Agricultural
15% Forested	% Cleared / Logged% Other (
22. Bankfull width: 7-8'	23. Bank height (from bed to top of bank): 6'
	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:Straight X Occasional bends	Frequent meander Very sinuous Braided channel
location, terrain, vegetation, stream classification, etc. Every to cach characteristic within the range shown for the ecc characteristics identified in the worksheet. Scores should re characteristic cannot be evaluated due to site or weather co comment section. Where there are obvious changes in the cl into a forest), the stream may be divided into smaller reaches reach. The total score assigned to a stream reach must rang highest quality.	ge 2): Begin by determining the most appropriate ecoregion based on characteristic must be scored using the same ecoregion. Assign points pregion. Page 3 provides a brief description of how to review the effect an overall assessment of the stream reach under evaluation. If a inditions, enter 0 in the scoring box and provide an explanation in the haracter of a stream under review (e.g., the stream flows from a pasture is that display more continuity, and a separate form used to evaluate each between 0 and 100, with a score of 100 representing a stream of the
Total Score (from reverse): Comme	ents:
Evaluator's Signature	Date

This channel evaluation form is intended to be used only as a guide to assist landowners and environmental professionals in gathering the data required by the United States Army Corps of Engineers to make a preliminary assessment of stream quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

STREAM QUALITY ASSESSMENT WORKSHEET

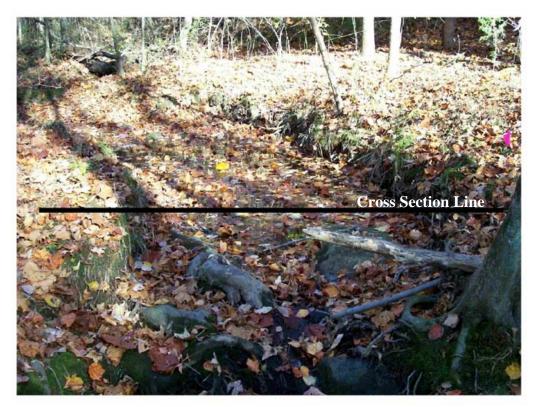

44	CHARACTERISTICS		10N POIN	FRANCES Motoria	SCORE
	Presence of flow / persistent pools in stream	-0-5. 	art. 0 −4 at.,	Stollers -	0
	2. Evidence of past human alteration (extensive alteration = 0, no alteration = max points) Sec.	0 - 6	$0 = 5 \cdot \epsilon$	0_5	5
	Riparian Zope , the buffer = 0 configuous, wide buffer = max nonus) (***	0-6	s.04		3
4.8	Evidence of nutrient or chemical discharges		\$	0	4
5.	Groundivater discharge Minirdi. charge = 0. spribes. sceps, wellands, etc. = max poults):	× 0 ≤ 3	A 0 4	0.4	0
26	 Presence of adjacent floodplain (no floodplain = 0 sectorsive floodplain - max points) 	0-4	0 - 4	0-2	1
		0-5 S	0.0-4 v	0.72	2
778 M	Model Optimized Optized Optized Optize	0-6	0 = 4		0
2007 9	<u>A (no wetlands</u> 0, laige adjacent wetlands - max points) #= # Channel sinuesity	0-5	0-4		
310.5	Stevensive channelization = 0, natural meander = niax points) - Sediment input	<u></u>	0-4		1
<u>認後</u> 学校 1114			<u>0-4</u>	1000 A.	
	(fue, homogenous = 0, large, diverse sizes = max points) ** Evidence of channel incision or widening ***.				4
	(deeply incised = 0, stable bed & banks = may points) 4/2. Presence of major bank failures = 0.227.				3
	(severe closion =0, no erosion, stable banks = max points);; Root depth and density on banks;		0-3 % 		2
<u>14</u>	<pre>ite (no visible mots = 0: deuse roots throughout = max points) // Impact by agriculture. Investock or timber production</pre>		2.2.0-4 /		4
15	<u>stsubstantial impact</u> =0, no evidence = max points) <u>Presence of riffle-pool/ripple pool complexes</u>	20=5	0=4	075 3075	لح
16	tino rattles/ripples or pools = 0, well-developed = max points) Habitat complexity	0-3	0-5-8		_3
17	whittle or no habitat = 0. frequent varied habitats = max points):	0 6 7	÷0≌6'asy	0	6
18	(no shading vegetation = 0; continuous canopy = max points)	0-5	0-5	<u>e</u>	4
19 -	Substrate embeddedaess (deeply embedded = 0, loose structure = max)	A NA	8 0-4	0-4	3
: 20 ¢	Presence of stream invertebrates (see page 4). (no evidence = 0, common, numerous types = max points).	0 - 4	$\sim_{s_{2}} 0 - s$	0-5-	0
-21 21	Presence of amphibians (no evidence = 0, common, numerous types = max points) >	0 = 4	0-4	0-4	Ø
- 22	Presence of fish (no evidence = 0, common, numerous types = max points).	0 -4	0-4	0-4	0
23	Evidence of wildlife use (no evidence = 0 abundant evidence = max points):	.0=6	2 -0 - 5	0.25	3
	Total Points Possible	* • 100. *	100	100.55	N.S.Y.
	TOTAL SCORE (also enter onei	rst page) 🕫	P. A.		49

* These characteristics are not assessed in coastal streams.

Appendix 4 – Reference Site Photographs

Cross-Section 1 Riffle

Cross-Section 2 Pool



Cross-Section 3 Pool

McKee Creek – (D07063S) Reference Site Photos

Cross-Section 4 Riffle

Cross-Section 5 Riffle

Cross-Section 6 Pool

Appendix 5 – Reference Site USACE Routine Wetland Determination Data Forms USACE AID#_

I.

4

(

£

2

DWQ #____

Site #____ (indicate on attached map)

ķ

STATEMENT FOR THE CONTRACT OF CONTRACTS	an diam dia a dara			
(. Applicant's name: NC-EE	on for the stream reach un		TILD	
· · ·			Todd P. ; Lu	
3. Date of evaluation: 1-9-0			Early Afternoo	
5."Name of stream: Dixon			tawba River	
7. Approximate drainage area:			known	
9. Length of reach evaluated		10. County: Mec	sten burg	
 Site coordinates (if known); 	profer in decimal degrees	12. Subdivision name	(if any):	
atitude (ex. 34.872312):				
Method location determined (circle): 13. Location of reach under evalua	ition (note nearby coads and	landmarks and attach ma	ip identifying stream(s)	location) The
reach evaluated is				
14. Proposed channel work (if any): None			
IS. Recent weather conditions:				
16. Site conditions at time of visit;				2
17. Identify any special waterway	classifications known:	Section 10Ti	dal WatersEss	ential Fisherics Habitat
	ng Resource Waters			
18. Is there a pond or lake located	upstream of the evaluation p	point? YES NO If yes	, estimate the water surf	ace area: LACA
19. Does channel appear on USGS	quad map? (YES NO	20. Does channel appe	ar on USDA Soil Surve	v? YES NO
21. Estimated watershed land use:	30 % Residential	30% Commercial	10 % Industrial	% Auricultural
1	30 % Forested	% Cleared / Logged	% Other (
22. Bankfull width: <u> </u>	2* 8ng	23. Bank height (from	hed to (on of bank):	7-3'
24. Channel slope down center of s	stream; Flat (0 to 2%)	X Gentle (2 to 4%)	Moderate (4 to 10%) Steen (>10%)
25. Channel sinuosity:Straig	ht Occasional bends	X Frequent meander	Very simons	Btaided shunset
instructions for completion of w ocation, terrain, vegetation, stream o each characteristic within the characteristics identified in the we characteristic cannot be evaluated comment section. Where there are not a forest), the stream may be d each. The total score assigned to highest quality.	a classification, etc. Every range shown for the eco- orksheet. Scores should re- due to site or weather con e obvious changes in the ch ivided into smaller reaches	characteristic must be so region. Page 3 provide flect an overall assessme iditions, enter 0 in the s aracter of a stream under that display more continu	ored using the same coc s a brief description of at of the stream reach coring box and provide review (e.g., the stream rity, and a senarate form	pregion. Assign points of how to review the under evaluation. If a an explanation in the n flows from a pasture
				- 6
fotal Score (from reverse):	Commea	its: Reference	Reach	<u></u>
fotal Score (from reverse):				
fotal Score (from reverse):				
fotal Score (from reverse):			Date	
fotal Score (from reverse):	intended to be used only a the United States Army ng from the completion o	as a guide to assist land Corps of Engineers to f this form is subject	Date owners and environm make a preliminary a to USACE approval a	ental professionals in assessment of stream

STREAM QUALITY ASSESSMENT WORKSHEET

ECOREGION POINT RANGE CHARACTERISTICS SCOR Coastal Piedmont Mountain Presence of flow / persistent pools in stream 0 5 3 (no flow or saturation - 0; strong flow - max points) 30 . 4 0 Evidence of past human alteration 3 0 - 60.5 (extensive alteration = 0, no alteration = max points) 0 Riparian zone 3 (no butter - 0; contiguous, wide buffer - max points) 0 - 6 0 4 0 5 Evidence of nutrient or chemical discharges 4 Û. (extensive discharges - 0; no discharges - max points) -0 Groundwater discharge 0 3 3 (no discharge = 0; springs, seeps, wetlands, etc. 0 4 max points) Presence of adjacent floodplain 3 0 4 0-4 (no floodplain = 0; extensive floodplain = max points) Entrenchment/floodplain access Ô deeply entrenched. 0; frequent flooding max points) 0 4 0 Presence of adjacent wetlands (no wetlands = 0, large adjacent wetlands = max points) 0 = 64 0.-0 Channel sinuosity (extensive channelization: 0; natural meander max points) 0 4 3 0. Sediment input 0 (extensive deposition = 0; little or no sediment = max points) 0=4 Z Size & diversity of channel bed substrate 3 (fine, homogenous = 0; farge, diverse sizes = max points) 4 .0 Evidence of channel incision or widening 0 5 3 (deeply incised = 0, stable bed & banks = max points) 0 4 0 Presence of major bank failures 0 5 0 3 (severe crossion = 0; no crossion, stable banks -, max points) . 0 Root depth and density on banks (notvisible roots = 0, dense roots throughout = max points) 0 0 2 Impact by agriculture, livestock, or timber production 0.5 $0^{+}4$ (substantial impact =0; no evidence = max points) 2 0 Presence of riffle-pool/ripple-pool complexes (no riftles/ripples or pools = 0; well-developed - max points) 0 - 34 0 5 0 6 Habitat complexity (little or no habitat = 0; frequent, varied habitats = max points) 0 6 0 - 60. 5 _6 Canopy coverage over streambed 3 (no shading vegetation 0; continuous canopy - max points) 0 4 0 5 Substrate embeddedness N.A 3 0 4 0 4 (deeply embedded = 0; loose structure - max) Presence of stream invertebrates (see page 4). 0 (no evidence = 0; common; numerous types = max points) 4 0 - 50 3 4 Presence of amphibians 0 4 (no evidence = 0, common numerous types = max points) 0 4 0 4 1 Presence of fish 0 = 4(no evidence = 0; common; numerous types 0 0 - 40 4 max points) Evidence of wildlife use 0 6 0-5 0 5 (no evidence = 0; abundant evidence = max points) 3 **Fotal Points Possible** 100. 100 100 TOTAL SCORE (also enter on first page) 62

* These characteristics are not assessed in coastal streams.

10

11

12

14

15

16

1

18

19

20

21

22

STABILIT

TABITAT

BIOLOCY

Appendix 6 – Reference Site NCDWQ Stream Classification Forms

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Date: 1-9-08	Project: Makee Cak Re	st. Latitude:
Evaluator: LT. TP	Site: Reference React	Longitude:
Total Points: Stream is at least intermittent 45.5 if ≥ 19 or peronnial if ≥ 30	Chixon Branch County: Mecklenburg	Other e.g. Quad Name:
A Geometribelegy (Subtrial =	4.5 Absent V	Veak Moderate Strong

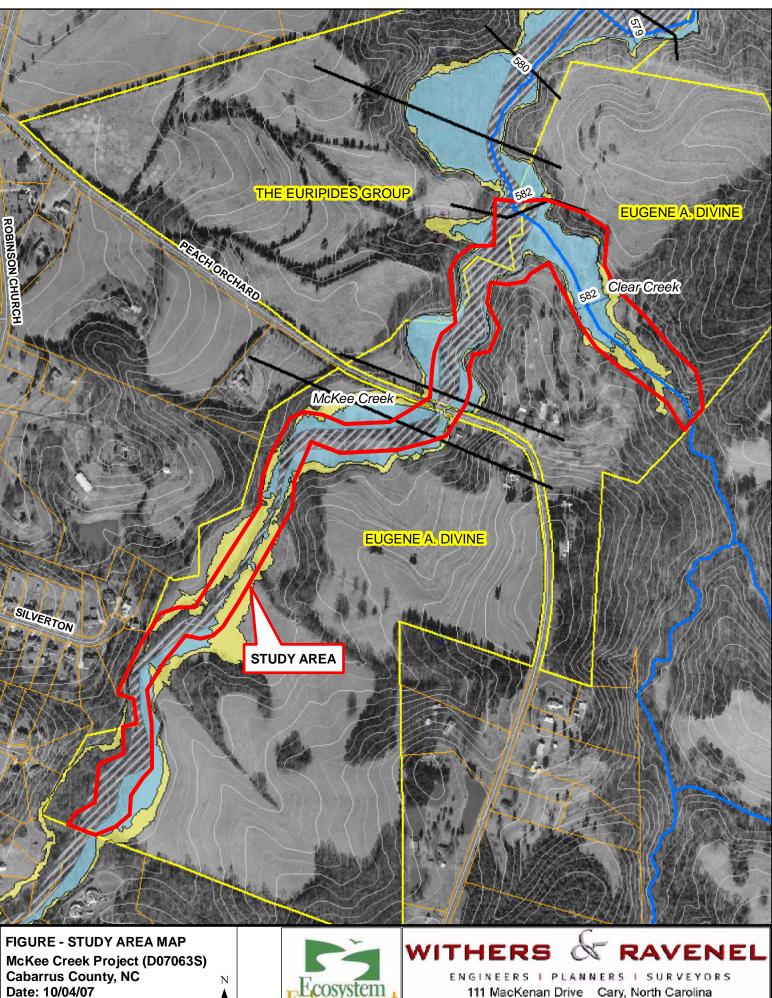
A. Geomorphology (Subtotal = 27.)	Absent	weak	wouerate	ouong
1 ^a . Continuous bed and bank	0	1	. 2	3
2. Sinuosity	0	1	2	3
3. In-channel structure: riffle-pool sequence	0	1	2	3
4. Soil texture or stream substrate sorting	× 0	1	2	3
5. Active/relic floodplain	0	* 1		3
6. Depositional bars or benches	0	11	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0		2	3
9 * Natural levees	0	0	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	0	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	No	= 0	Yes	= 3

^a Man made ditches are not rated; see discussions in manual

B. Hydrology (Subtotal = 10.5)

14. Groundwater flow/discharge	0	1	2	3
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3
16. Leaflitter	15	1	0.5	. 0
17. Sediment on plants or debris	0	0.5	1	1.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	0	1.5
19. Hydric soils (redoximorphic features) present?	No	= 0	Yes	= 1.5

C. Biology (Sublotal = 10.5)

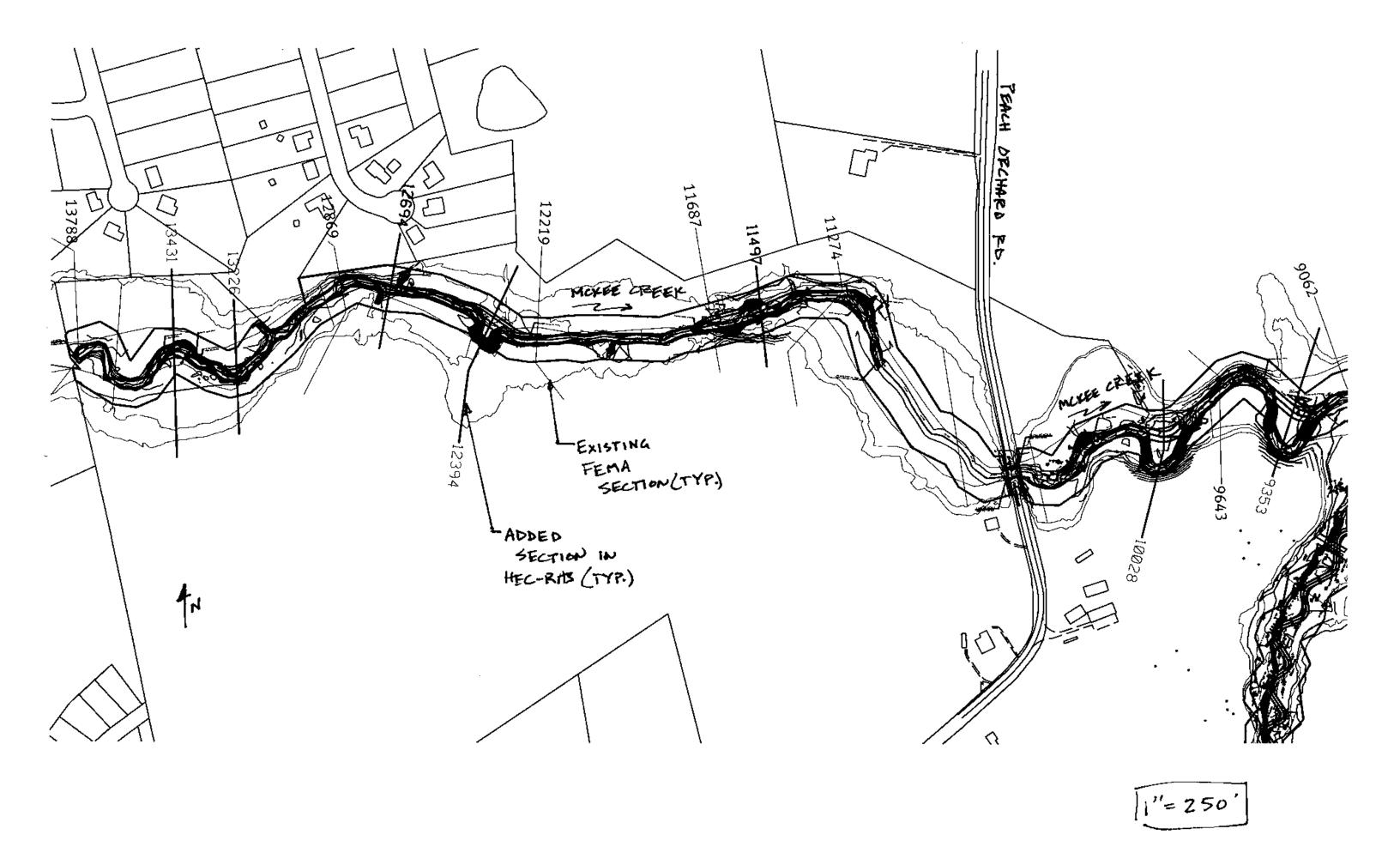

20 ^b , Fibrous roots in channel	3)	2	1	0
21 ^b . Rooted plants in channel	3	2	1	- 0
22. Crayfish	0	0.5	1	1.5
23. Bivalves	0	D	2	3
24. Fish	0	0.5	1	1.5
25. Amphibians	0	0.5	1	1.5
26. MacrobenIhos (note diversity and abundance)	0	0.5	1	(1.5)
27. Filamentous algae; periphyton	0	0	2	3
28, Iron oxidizing bacteria/fungus.		0.5	1	1.5
29 ^b . Wetland plants in streambed	FAC = 0.5; FA	CW = 0.75; OBL	= 1.5 SAV =	2.0; Other = (

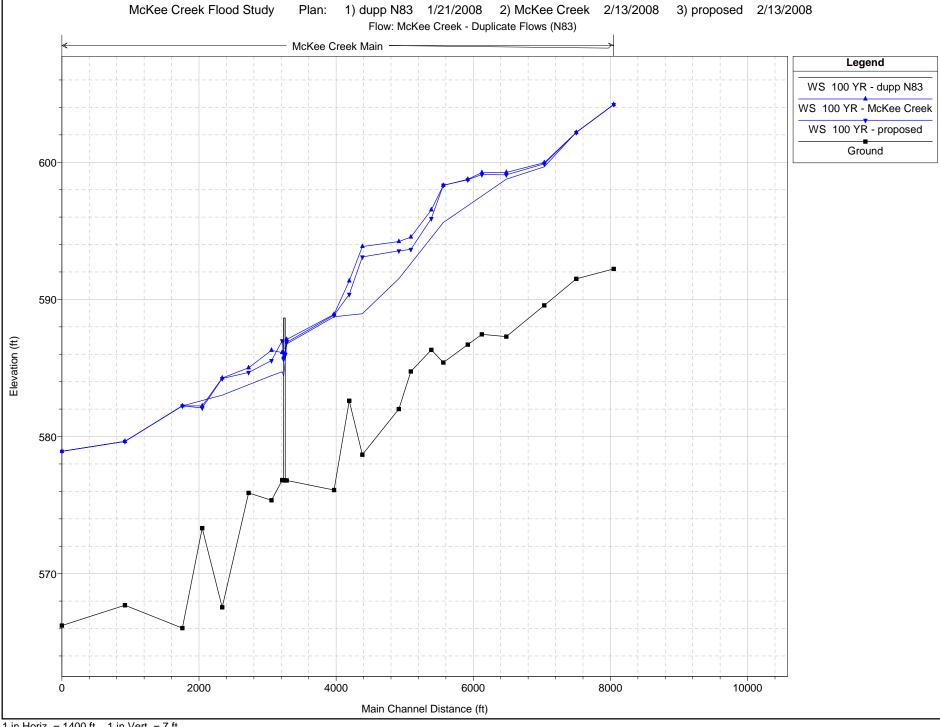
^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aqualic or welland plants.

Notes: (use back side of this form for additional notes.)

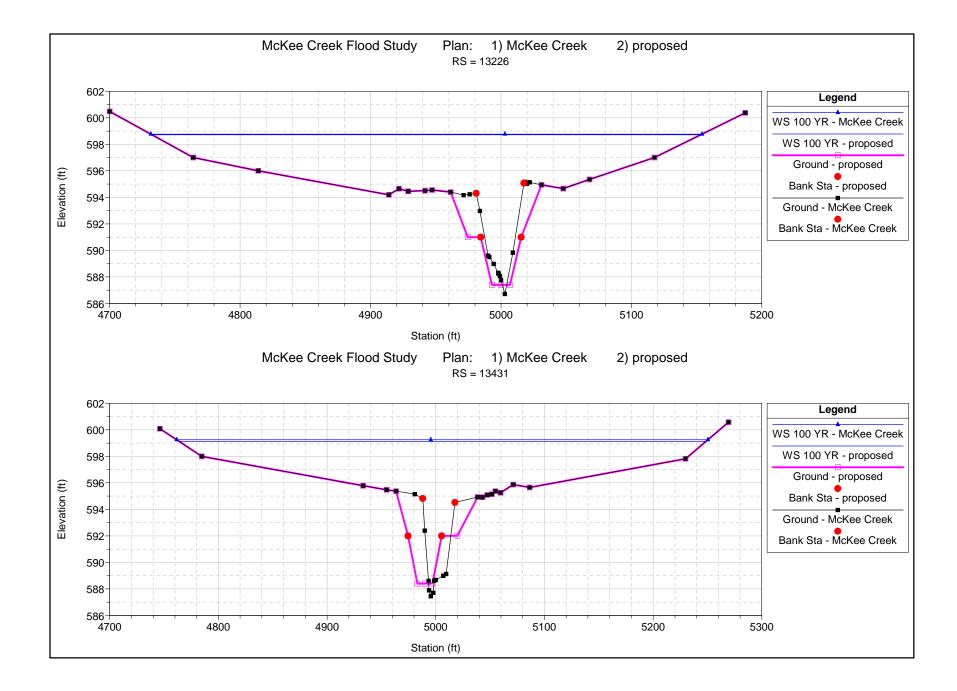
Sketch:

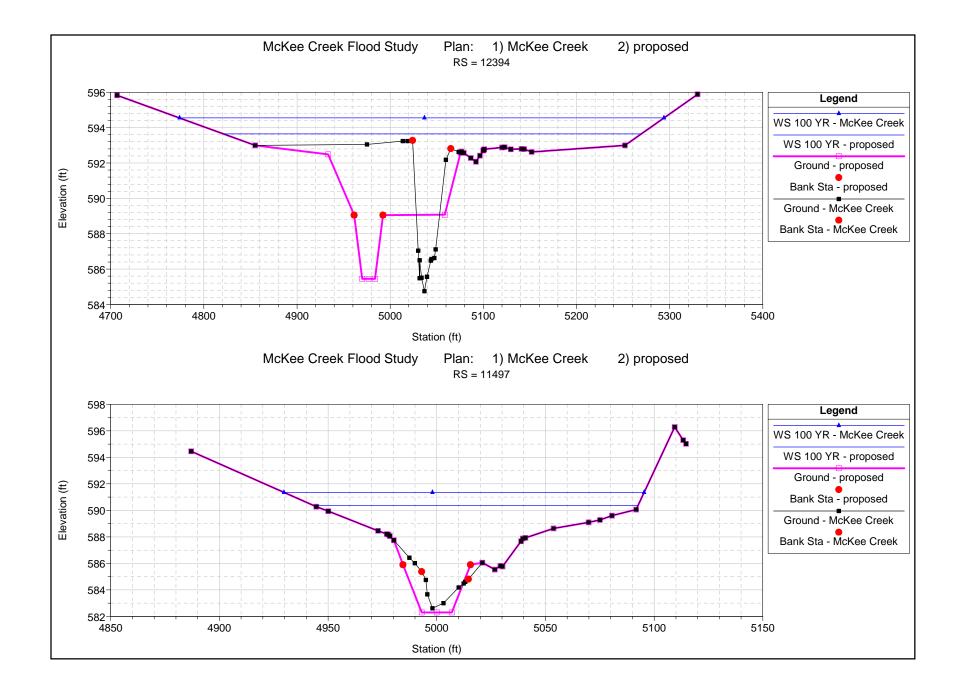
Appendix 7 – HEC-RAS Analysis

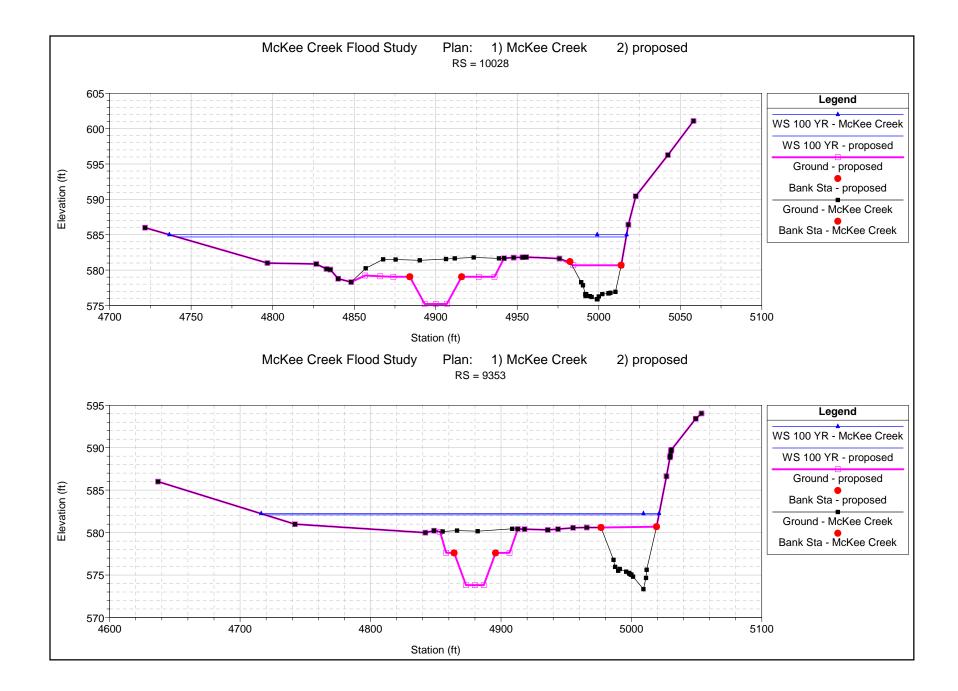


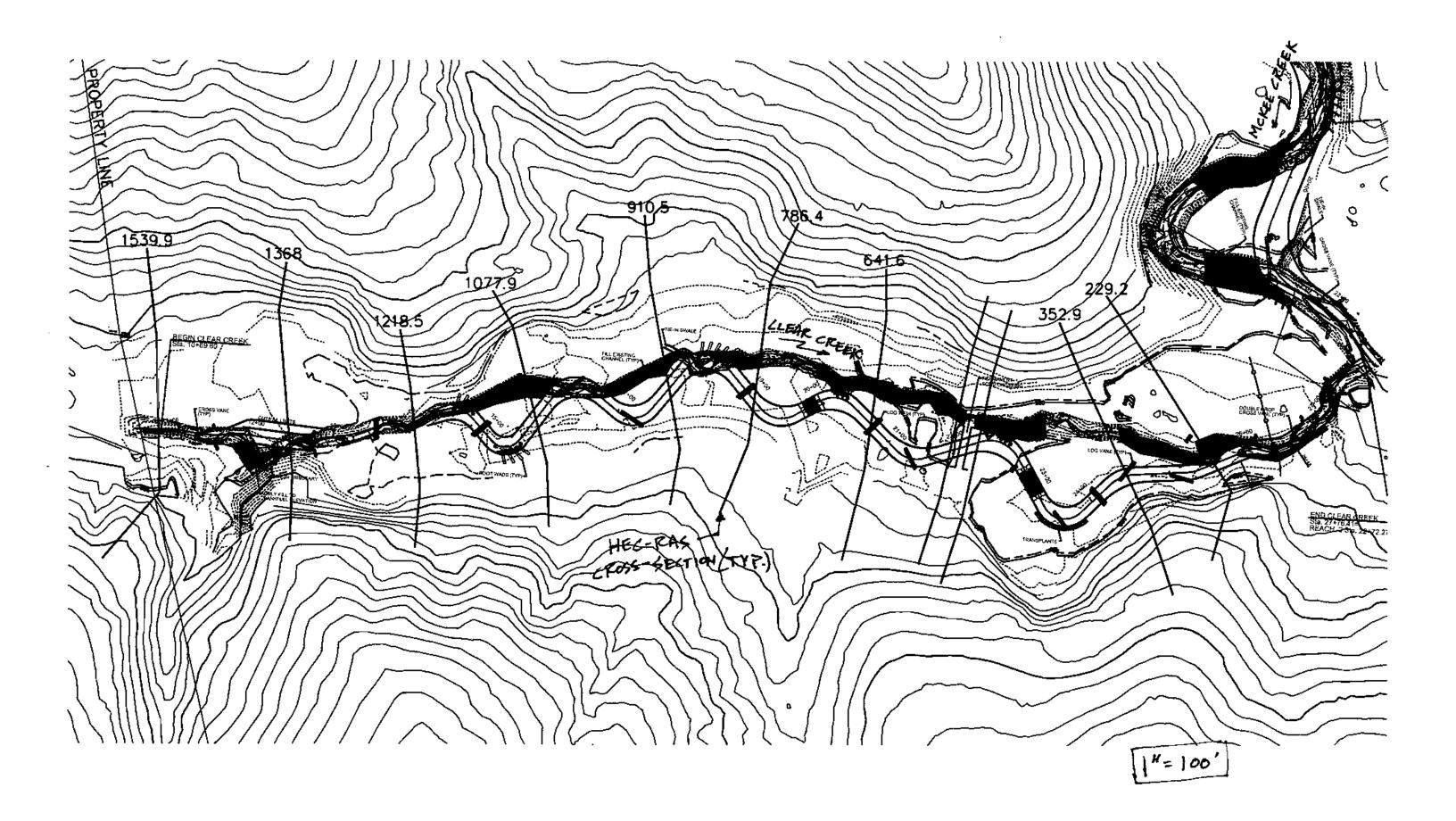

1 inch equals 500 feet

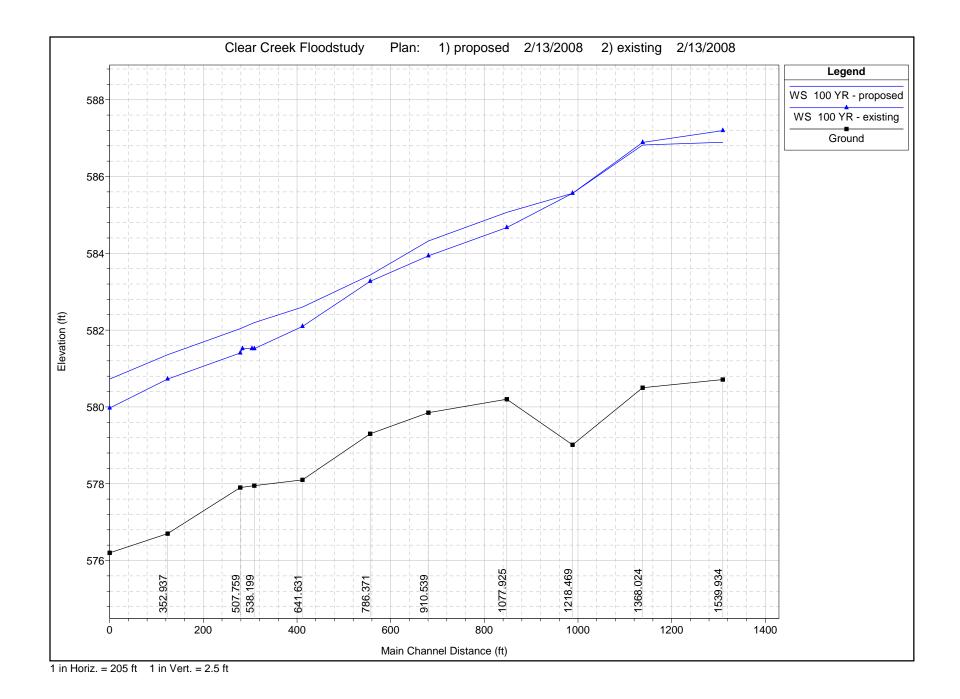
www.withersravenel.com

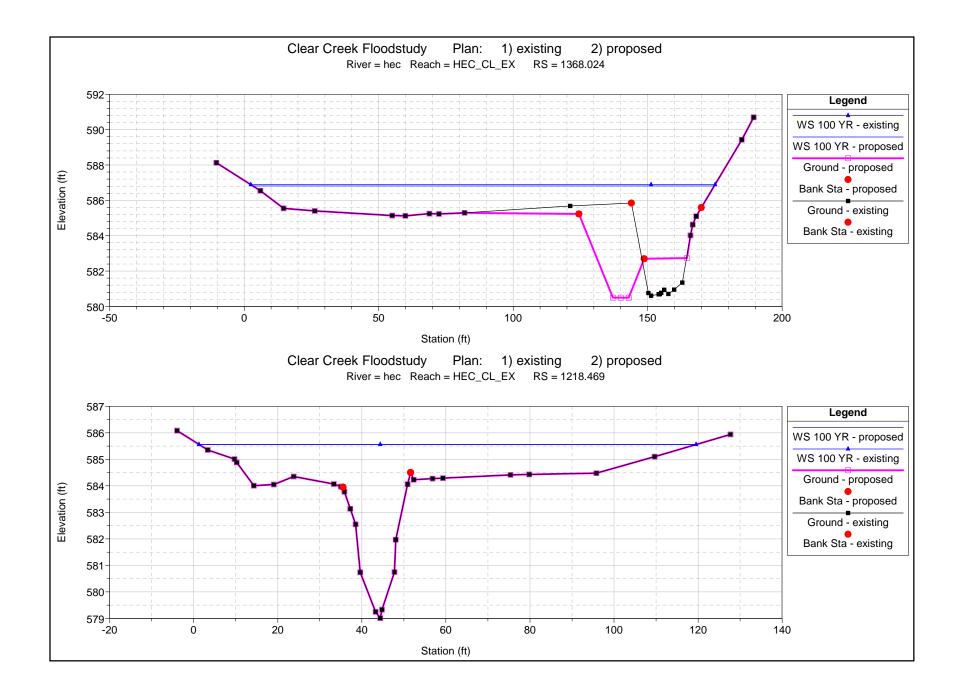


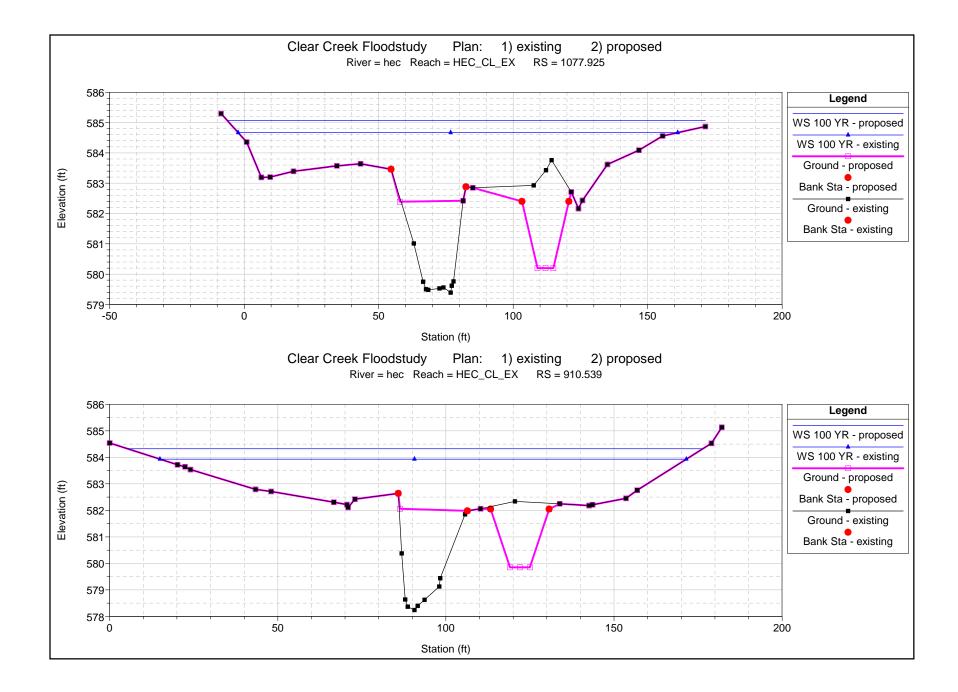


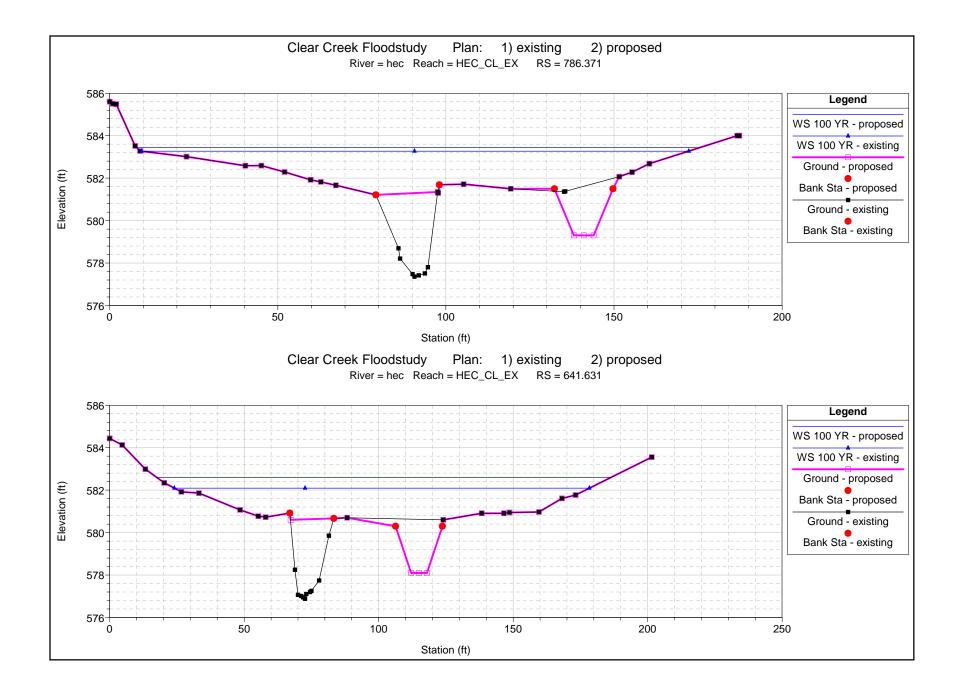

1 in Horiz. = 1400 ft 1 in Vert. = 7 ft

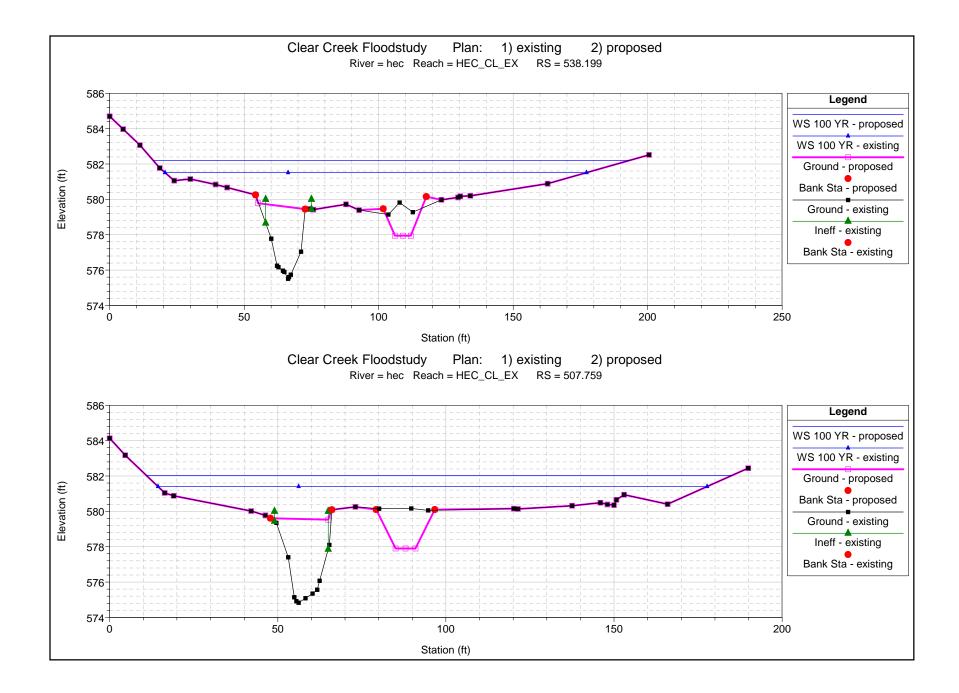

							Date:		3/2008	
			WSEL from FIS		Duplicate WSEL from HEC-RAS		Existing Conditions Model		Proposed Conditions Mode	
							(Ext.			
		Discharge	WSEL	WSEL	(FIS WSEL -	WSEL	WSEL - Dup.	WSEL	(Prop.WSEL	
River Station	Profile	(cfs)	(ft.)	(ft.)	Dup. WSEL)	(ft.)	WSEL)	(ft.)	Ext. WSEL)	
15353	10 YR	1640		602.36		602.36	0	602.36		
15353	25 YR	2610		603.73		603.73	0	603.73		
15353	100 YR	3010		604.21		604.21	0	604.21	0	
15353	500 YR	4170		605.45		605.45	0	605.45		
14808	10 YR	1640		600		600.02	0.02	600.01		
14808	25 YR	2610		601.62		601.61	-0.01	601.61		
14808	100 YR	3010	602.2	602.18	0.02	602.17	-0.01	602.17	0	
14808	500 YR	4170		603.58		603.61	0.03	603.60		
14341	10 YR	1640		597.88		598.18	0.3	597.94		
14341	25 YR	2610		599.18		599.43	0.25	599.33		
14341	100 YR	3010	599.7	599.67	0.03	599.97	0.3	599.89	-0.08	
14341	500 YR	4170		600.92		601.49	0.57	601.43		
				/					1	
13788	10 YR	1640		596.88		597.48	0.6	596.94	1	
13788	25 YR	2610		598.15		598.62	0.47	598.38	1	
13788	100 YR	3010	598.8	598.77	0.03	599.26	0.49	599.09	-0.17	
13788	500 YR	4170	59010	600.39	0.0)	601.09	0.7	601.01	,	
19700	Jee	4-7 0		0000			0.17	001101		
13431	10 YR	1640				597.29		596.81		
13431	25 YR	2610				598.55		598.35		
13431	100 YR	3010				599.25		599.11	-0.14	
	500 YR					599·25 601.14		601.07	-0.14	
13431	500 fK	4170				601.14		001.07		
1000(10 YR	16.10				507.04		50((0		
13226		1640				597.01		596.60		
13226	25 YR	2610				598.04		597.97		
13226	100 YR	3010				598.76		598.72	-0.04	
13226	500 YR	4170				600.74		600.71		
- 0.(- \/D					(()		6		
12869	10 YR	1923		593.94	-	596.68	2.74	596.22		
12869	25 YR	2732		595.03	-	597.63	2.6	597.59		
12869	100 YR	3272	595.6	595.61	-0.01	598.32	2.71	598.32	0	
12869	500 YR	4974		596.98		600.21	3.23	600.21		
12694	10 YR	1923				595.82		594.43		
12694	25 YR	2732				596.11		595.26		
12694	100 YR	3272				596.53		595.90	-0.63	
12694	500 YR	4974				597.49		597.49		
		↓ ↓								
12394	10 YR	1923				592.25		591.26		
12394	25 YR	2732				594.19		592.66		
12394	100 YR	3272				594.55		593.65	-0.9	
12394	500 YR	4974				596.61		596.15		
12219	10 YR	1923		589.68		591.92	2.24	591.06		
12219	25 YR	2732		590.85		593.39	2.54	592.66		
12219	100 YR	3272	591.5	591.51	-0.01	594.22	2.71	593.55	-0.67	
12219	500 YR	4974		593.41		596.42	3.01	595.87	1	
11687	10 YR	1923		586.77		591.69	4.92	590.70		
11687	25 YR	2732		588.10		593.08	4.98	592.25		
11687	100 YR	3272	589	588.96	0.04	593.86	4.9	593.10	-0.76	
11687	500 YR	4974		591.35		595.93	4.58	595.31		
11497	10 YR	1923				589.54		588.24		
11497	25 YR	2732				590.70		589.58		
11497	100 YR	3272				591.35	1	590.37	-0.98	
11497	500 YR	4974				592.98		592.15		

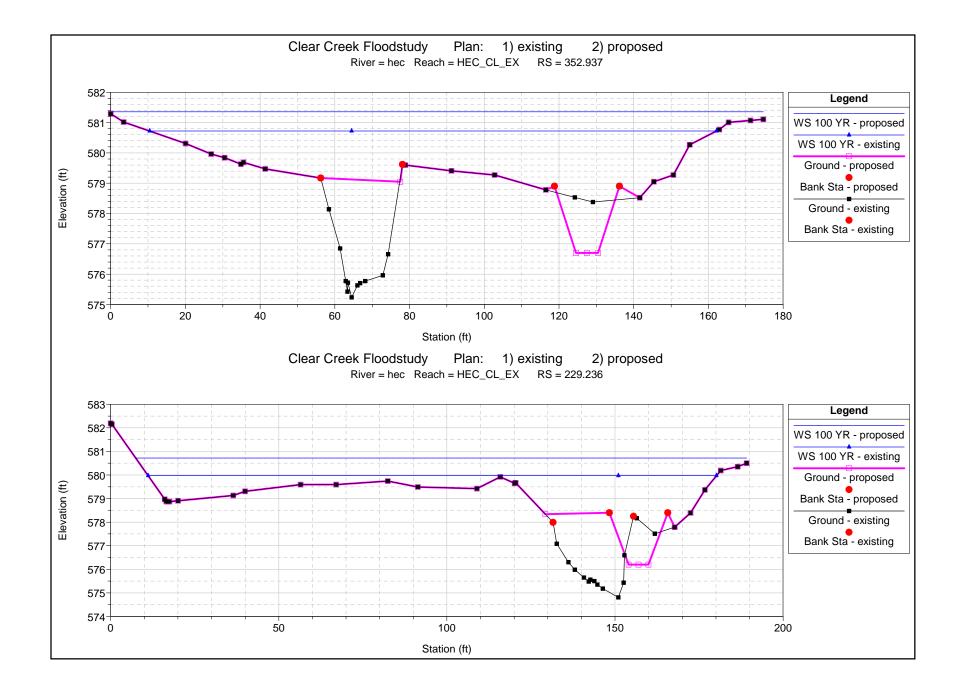

			FLOODST	UDY COMP	ARISON TAB	LE - McKee	Creek		
STREAM:	McKee Cree	ek					Date:		County, NC 3/2008
			WSEL from	Duplic	ate WSEL	Existing Cor	nditions Model		nditions Model
			FIS		HEC-RAS				
							(Ext.		
		Discharge	WSEL	WSEL	(FIS WSEL -	WSEL	WSEL - Dup.	WSEL	(Prop.WSEL
River Station	Profile	(cfs)	(ft.)	(ft.)	Dup. WSEL)	(ft.)	WSEL)	(ft.)	Ext. WSEL)
11274	10 YR	1923		586.36		586.62	0.26	586.43	
11274	25 YR	2732		587.79		588.12	0.33	587.94	
11274	100 YR	3272	588.7	588.74	-0.04	588.91	0.17	588.86	-0.05
11274	500 YR	4974	500.7	591.34	0.04	591.66	0.32	591.35	0.05
112/4	300 11	49/4		591.54		591.00	0.52	591.55	
10362	10 YR	1923		582.13		584.58	2.45	583.68	
10362	25 YR	2732		583.59		585.65	2.06	584.87	
10362	100 YR	3272		584.44		586.28	1.84	585.54	-0.74
10362	500 YR	4974		586.63		588.02	1.39	587.32	
10028	10 YR	1923				582.94		582.62	
10028	25 YR	2732				584.29		584.00	
10028	100 YR	3272				585.01		584.68	-0.33
10028	500 YR	4974				586.92		586.48	0.55
10020		427 4				j000.j2		500.40	
9643	10 YR	1923		580.79		582.69	1.9	582.39	
9643	25 YR	2732		582.19		583.70	1.51	583.63	
9643	100 YR	3272	583	583.02	-0.02	584.27	1.25	584.24	-0.03
9643	500 YR	4974		585.09		585.82	0.73	585.83	
	- 1/D					00(
9353	10 YR	1923				580.86		579.71	
9353	25 YR	2732				581.80		581.56	
9353	100 YR 500 YR	3272				582.23 584.55		582.08	-0.15
9353	500 FK	4974				504.55		584.43	
9062	10 YR	1954		580.06		580.06	0	580.06	
9062	25 YR	2748		581.43		581.43	0	581.43	
9062	100 YR	3296	582.2	582.24	-0.04	582.24	0	582.24	0
9062	500 YR	5027		584.26		584.26	0	584.26	
8226	10 YR	105.6		577.26		577.26	0	577.06	
8226	25 YR	1954 2748		<u> </u>	+	577.36 578.78	0	<u>577.36</u> 578.78	-
8226	100 YR	3296	579.6	579.65	-0.05	579.65	0	579.65	0
8226	500 YR	3290 5027	5/9.0	5/9.05	-0.05	579.05	0	579.05	
0220	<u>الا مور</u>	/22ر		والنافر	1	J01110	, , , , , , , , , , , , , , , , , , ,	J01.10	1
7306	10 YR	1954		576.58		576.58	0	576.58	
7306	25 YR	2748		578.04		578.04	0	578.04	
7306	100 YR	3296	578.9	578.92	-0.02	578.92	0	578.92	0
7306	500 YR	5027		580.00		580.00	0	580.00	










			FLOODST	UDY COM	PARISON TAE	BLE - Clear	Creek		
STREAM:	Clear Creek								County, NC
			WSEL from Duplicate WSEL FIS from HEC-RAS		Date: Existing Conditions Model		2/13/2008 Proposed Conditions Model		
River Station	Profile	Discharge (cfs)	WSEL (ft.)	WSEL (ft.)	(FIS WSEL - Dup. WSEL)	WSEL (ft.)	(Ext. WSEL - Dup. WSEL)	WSEL (ft.)	(Prop.WSEL- Ext. WSEL)
1539.934	10 YR	340	()	()		586.08		585.8	-0.28
1539.934	100 YR	720				587.19		586.89	-0.3
1368.024	10 YR	340				585.63		585.54	-0.09
1368.024	100 YR	720				586.89		586.82	-0.07
1218.469	10 YR	340				583.90		584.44	0.54
1218.469	100 YR	720				585.56		585.56	0
1077.925	10 YR	340				583.56		584.07	0.51
1077.925	100 YR	720				584.67		585.06	0.39
910.539	10 YR	340				582.76		583.36	0.6
910.539	100 YR	720				583.93		584.32	0.39
786.371	10 YR	340				582.21		582.50	0.29
786.371	100 YR	720				583.27		583.43	0.16
641.631	10 YR	340				581.34		581.69	0.35
641.631	100 YR	720				582.09		582.60	0.51
538.199	10 YR	340				581.17		581.32	0.15
538.199	100 YR	720				581.51		582.19	0.68
507.759	10 YR	340				580.28		581.06	0.78
507.759	100 YR	720				581.40		582.04	0.64
352.937	10 YR	340				579.38		580.44	1.06
352.937	100 YR	720				580.72		581.36	0.64
229.236	10 YR	340				578.71		579.81	1.1
229.230	100 YR	720				579.97		580.72	0.75

Appendix 8 – FHWA Categorical Exclusion Form

Appendix A

Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Par	t 1: General Project Inform	ation
Project Name:	MCKEE CREEK STREAM RESTORATION	
County Name:	CABARRUS	
EEP Number:	D070603S	
Project Sponsor:		
Project Contact Name:	HEATH WADSWORTH	
Project Contact Address:	111 MACKENAN DRIVE, CARY NC 27511	
Project Contact E-mail:	hwadsworth@withersravenel.com	
EEP Project Manager:	ROBIN DOLAN	
	Project Description	
<u> </u>		
<u> </u>	For Official Use Only	
Reviewed By:		
12:11:00		Robin E. Dol.
12-11-07		
Date		EEP Project Manager
Conditional Approved By:		. (
Date		For Division Administrator
		FHWA
Check this box if there are	outstanding issues	
Final Approval By:		
		\wedge μ α
		Ault 6 hos
12-10-07		With Lapors
Date		For Division Administrator
		FHWA